
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Algebraic structures; Axiomatic semantics
Section and Practice Problems

Apr 3–6, 2018

1 Haskell

(a) Install the Haskell Platform, via https://www.haskell.org/platform/.

(b) Get familiar with Haskell. Take a look at http://www.seas.harvard.edu/courses/cs152/
2018sp/resources.html for some links to tutorials.

In particular, get comfortable doing functional programming in Haskell. Write the factorial function.
Write the append function for lists.

(c) Get comfortable using monads, and the bind syntax. Try doing the exercises at https://wiki.
haskell.org/All_About_Monads#Exercises (which will require you to read the previous sec-
tions to understand do notation, and their previous examples).

(d) Also, look at the file http://www.seas.harvard.edu/courses/cs152/2018sp/sections/
haskell-examples.hs, which includes some example Haskell code (that will likely be covered in
Section).

2 Algebraic structures

(a) Show that the option type, with map defined as in the lecture notes (Lecture 18, Section 2.2) satisfy the
functor laws.

(b) Consider the list type, τ list. Define functions return and bind for the list monad that satisfy the monad
laws. Check that they satisfy the monad laws.

3 Axiomatic semantics

(a) Consider the program

c ≡ bar := foo;while foo > 0 do (bar := bar + 1; foo := foo− 1).

Write a Hoare triple {P} c {Q} that expresses that the final value of bar is two times the initial value
of foo.

(b) Prove the following Hoare triples. That is, using the inference rules from Section 1.3 of Lecture 19,
find proof tree with the appropriate conclusions.

(i) ` {baz = 25} baz := baz+ 17 {baz = 42}

(ii) ` {true} baz := 22; quux := 20 {baz+ quux = 42}

(iii) ` {baz+ quux = 42} baz := baz− 5; quux := quux+ 5 {baz+ quux = 42}

(iv) ` {true} if y = 0 then z := 2 else z := y × y {z > 0}

(v) ` {true} y := 10; z := 0;while y > 0 do z := z+ y {z = 55}

(vi) ` {true} y := 10; z := 0;while y > 0 do (z := z+ y; y := y − 1) {z = 55}

https://www.haskell.org/platform/
http://www.seas.harvard.edu/courses/cs152/2018sp/resources.html
http://www.seas.harvard.edu/courses/cs152/2018sp/resources.html
https://wiki.haskell.org/All_About_Monads#Exercises
https://wiki.haskell.org/All_About_Monads#Exercises
http://www.seas.harvard.edu/courses/cs152/2018sp/sections/haskell-examples.hs
http://www.seas.harvard.edu/courses/cs152/2018sp/sections/haskell-examples.hs

Algebraic structures; Axiomatic semantics
Section and Practice Problems

4 Environment Semantics

For Homework 5, the monadic interpreter you will be using uses environment semantics, that is, the oper-
ational semantics of the language uses a map from variables to values instead of performing substitution.
This is a quick primer on environment semantics.

An environment ρmaps variables to values. We define a large-step operational semantics for the lambda
calculus using an environment semantics. A configuration is a pair 〈e, ρ〉 where expression e is the expres-
sion to compute and ρ is an environment. Intuitively, we will always ensure that any free variables in e are
mapped to values by environment ρ.

The evaluation of functions deserves special mention. Configuration 〈λx. e, ρ〉 is a function λx. e, defined
in environment ρ, and evaluates to the closure (λx. e, ρ). A closure consists of code along with values for all
free variables that appear in the code.

The syntax for the language is given below. Note that closures are included as possible values and ex-
pressions, and that a function λx. e is not a value (since we use closures to represent the result of evaluating
a function definition).

e ::= x | n | e1 + e2 | λx. e | e1 e2 | (λx. e, ρ)
v ::= n | (λx. e, ρ)

Note than when we apply a function, we evaluate the function body using the environment from the
closure (i.e., the lexical environment, ρlex), as opposed to the environment in use at the function application
(the dynamic environment).

〈x, ρ〉 ⇓ ρ(x) 〈n, ρ〉 ⇓ n
〈e1, ρ〉 ⇓ n1 〈e2, ρ〉 ⇓ n2

〈e1 + e2, ρ〉 ⇓ n
n = n1 + n2

〈λx. e, ρ〉 ⇓ (λx. e, ρ)

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρlex[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

For convenience, we define a rule for let expressions.

〈e1, ρ〉 ⇓ v1 〈e2, ρ[x 7→ v1]〉 ⇓ v2
〈let x = e1 in e2, ρ〉 ⇓ v2

(a) Evaluate the program let f = (let a = 5 in λx. a+ x) in f 6. Note the closure that f is bound to.

(b) Suppose we replaced the rule for application with the following rule:

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρ[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

That is, we use the dynamic environment to evaluate the function body instead of the lexical environ-
ment.

What would happen if you evaluated the program let f = (let a = 5 in λx. a + x) in f 6 with this
modified semantics?

Page 2 of 2

	Haskell
	Algebraic structures
	Axiomatic semantics
	Environment Semantics

