Denotational semantics

Lecture 6
Thursday, February 14, 2019

1 Denotational semantics

We have seen two operational models for programming languages: small-step and large-step. We now consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical function that expresses what the program computes. We can think of a program c as a function from stores to stores: given an an initial store, the program produces a final store. For example, the program foo $:=\mathrm{bar}+1 \mathrm{can}$ be thought of as a function that when given an input store σ, produces a final store σ^{\prime} that is identical to σ except that it maps foo to the integer $\sigma(\mathrm{bar})+1$; that is, $\sigma^{\prime}=\sigma[$ foo $\mapsto \sigma(\mathrm{bar})+1]$.

We are going to model programs as functions from input stores to output stores. As opposed to operational models, which tell us how programs execute, the denotational model shows us what programs compute.

For a program c (a piece of syntax), we write $\mathcal{C} \llbracket c \rrbracket$ for the denotation of c, that is, the mathematical function that c represents:

$$
\mathcal{C} \llbracket c \rrbracket: \text { Store }- \text { Store }
$$

Note that $\mathcal{C} \llbracket c \rrbracket$ is actually a partial function (as opposed to a total function), because the program may not terminate for certain input stores; $\mathcal{C} \llbracket c \rrbracket$ is not defined for those inputs, since they have no corresponding output stores.

We write $\mathcal{C} \llbracket c \rrbracket \sigma$ for the result of applying the function $\mathcal{C} \llbracket c \rrbracket$ to the store σ. That is, if f is the function $\mathcal{C} \llbracket c \rrbracket$, then we write $\mathcal{C} \llbracket c \rrbracket \sigma$ to mean the same thing as $f(\sigma)$.

We must also model expressions as functions, this time from stores to the values they represent. We will write $\mathcal{A} \llbracket a \rrbracket$ for the denotation of arithmetic expression a, and $\mathcal{B} \llbracket b \rrbracket$ for the denotation of boolean expression b. Note that $\mathcal{A} \llbracket a \rrbracket$ and $\mathcal{B} \llbracket b \rrbracket$ are total functions.

$$
\begin{aligned}
& \mathcal{A} \llbracket a \rrbracket: \text { Store } \rightarrow \text { Int } \\
& \mathcal{B} \llbracket b \rrbracket: \text { Store } \rightarrow\{\text { true, false }\}
\end{aligned}
$$

Now we want to define these functions. To make it easier to write down these definitions, we will express (partial) functions as sets of pairs. More precisely, we will represent a partial map $f: A \rightharpoonup B$ as a set of pairs $F=\{(a, b) \mid a \in A$ and $b=f(a) \in B\}$ such that, for each $a \in A$, there is at most one pair of the form ($a,-$) in the set. Hence $(a, b) \in F$ is the same as $b=f(a)$.

We can now define denotations for IMP. We start with the denotations of expressions:

$$
\begin{aligned}
\mathcal{A} \llbracket n \rrbracket= & \{(\sigma, n)\} \\
\mathcal{A} \llbracket x \rrbracket= & \{(\sigma, \sigma(x))\} \\
\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket= & \left\{(\sigma, n) \mid\left(\sigma, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(\sigma, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n=n_{1}+n_{2}\right\} \\
\mathcal{A} \llbracket a_{1} \times a_{2} \rrbracket= & \left\{(\sigma, n) \mid\left(\sigma, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(\sigma, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n=n_{1} \times n_{2}\right\} \\
\mathcal{B} \llbracket \text { true } \rrbracket= & \{(\sigma, \text { true })\} \\
\mathcal{B} \llbracket \text { false } \rrbracket= & \{(\sigma, \text { false })\} \\
\mathcal{B} \llbracket a_{1}<a_{2} \rrbracket= & \left\{(\sigma, \text { true }) \mid\left(\sigma, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(\sigma, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n_{1}<n_{2}\right\} \cup \\
& \left\{(\sigma, \text { false }) \mid\left(\sigma, n_{1}\right) \in \mathcal{A} \llbracket a_{1} \rrbracket \wedge\left(\sigma, n_{2}\right) \in \mathcal{A} \llbracket a_{2} \rrbracket \wedge n_{1} \geq n_{2}\right\}
\end{aligned}
$$

The denotations for commands are as follows:

$$
\begin{aligned}
\mathcal{C} \llbracket \mathbf{s k i p} \rrbracket & =\{(\sigma, \sigma)\} \\
\mathcal{C} \llbracket x:=a \rrbracket & =\{(\sigma, \sigma[x \mapsto n \rrbracket) \mid(\sigma, n) \in \mathcal{A} \llbracket a \rrbracket\} \\
\mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket & =\left\{\left(\sigma, \sigma^{\prime}\right) \mid \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c_{1} \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in \mathcal{C} \llbracket c_{2} \rrbracket\right)\right\}
\end{aligned}
$$

Note that $\mathcal{C} \llbracket c_{1} ; c_{2} \rrbracket=\mathcal{C} \llbracket c_{2} \rrbracket \circ \mathcal{C} \llbracket c_{1} \rrbracket$, where \circ is the composition of relations. (Composition of relations is defined as follows: if $R_{1} \subseteq A \times B$ and $R_{2} \subseteq B \times C$ then $R_{2} \circ R_{1} \subseteq A \times C$ is $R_{2} \circ R_{1}=\{(a, c) \mid \exists b \in B .(a, b) \in$ $\left.R_{1} \wedge(b, c) \in R_{2}\right\}$.) If $\mathcal{C} \llbracket c_{1} \rrbracket$ and $\mathcal{C} \llbracket c_{2} \rrbracket$ are total functions, then \circ is function composition.

$$
\begin{aligned}
& \mathcal{C} \llbracket \text { if } b \text { then } c_{1} \text { else } c_{2} \rrbracket=\left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge\left(\sigma, \sigma^{\prime}\right) \in \mathcal{C} \llbracket c_{1} \rrbracket\right\} \cup \\
&\left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket \wedge\left(\sigma, \sigma^{\prime}\right) \in \mathcal{C} \llbracket c_{2} \rrbracket\right\} \\
& \mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket=\{(\sigma, \sigma) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
&\left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in \mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket\right)\right\}
\end{aligned}
$$

But now we've got a problem: the last "definition" is not really a definition, it expresses $\mathcal{C} \llbracket$ while b do $c \rrbracket$ in terms of itself! It is not a definition, but a recursive equation. What we want is the solution to this equation, i.e., we want to find a function f, such that f satisfies the following equation, and we will take the semantics of a while loop to be that function f.

$$
\begin{aligned}
f=\{ & (\sigma, \sigma) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
& \left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in f\right)\right\}
\end{aligned}
$$

1.1 Fixed points

We gave a recursive equation that the function $\mathcal{C} \llbracket$ while b do $c \rrbracket$ must satisfy.
To understand some of the issues involved, let's consider a simpler example. Consider the following equation for a function $f: \mathbb{N} \rightarrow \mathbb{N}$.

$$
f(x)= \begin{cases}0 & \text { if } x=0 \tag{1}\\ f(x-1)+2 x-1 & \text { otherwise }\end{cases}
$$

This is not a definition for f, but rather an equation that we want f to satisfy. What function, or functions, satisfy this equation for f ? The only solution to this equation is the function $f(x)=x^{2}$.

In general, there may be no solutions for a recursive equation (e.g., there are no functions $g: \mathbb{N} \rightarrow \mathbb{N}$ that satisfy the recursive equation $g(x)=g(x)+1$), or multiple solutions (e.g., find two functions $g: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $\left.g(x)=4 g\left(\frac{1}{2} x\right)\right)$.

We can compute solutions to such equations by building successive approximations. Each approximation is closer and closer to the solution. To solve the recursive equation for f, we start with the partial function $f_{0}=\emptyset$ (i.e., f_{0} is the empty relation; it is a partial function with the empty set for its domain). We compute successive approximations using the recursive equation.

$$
\begin{aligned}
f_{0} & =\emptyset \\
f_{1} & = \begin{cases}0 & \text { if } x=0 \\
f_{0}(x-1)+2 x-1 & \text { otherwise }\end{cases} \\
& =\{(0,0)\} \\
f_{2} & = \begin{cases}0 & \text { if } x=0 \\
f_{1}(x-1)+2 x-1 & \text { otherwise }\end{cases} \\
& =\{(0,0),(1,1)\} \\
f_{3} & = \begin{cases}0 & \text { if } x=0 \\
f_{2}(x-1)+2 x-1 & \text { otherwise }\end{cases} \\
& =\{(0,0),(1,1),(2,4)\}
\end{aligned}
$$

This sequence of successive approximations f_{i} gradually builds the function $f(x)=x^{2}$.
We can model this process of successive approximations using a higher-order function F that take one approximation f_{k} and returns the next approximation f_{k+1} :

$$
\begin{aligned}
F & :(\mathbb{N} \rightharpoonup \mathbb{N}) \rightarrow(\mathbb{N} \rightharpoonup \mathbb{N}) \\
F(f) & =f^{\prime}
\end{aligned}
$$

where

$$
f^{\prime}(x)= \begin{cases}0 & \text { if } x=0 \\ f(x-1)+2 x-1 & \text { otherwise }\end{cases}
$$

A solution to the recursive equation (1) is a function f such that $f=F(f)$. In general, given a function $F: A \rightarrow A$, we have that $a \in A$ is a fixed point of F if $F(a)=a$. We also write $a=\operatorname{fix}(F)$ to indicate that a is a fixed point of F.

So the solution to the recursive equation (1) is a fixed-point of the higher-order function F. We can compute this fixed point iteratively, starting with $f_{0}=\emptyset$ and at each iteration computing $f_{k+1}=F\left(f_{k}\right)$. The fixed point is the limit of this process:

$$
\begin{aligned}
f & =\operatorname{fix}(F) \\
& =f_{0} \cup f_{1} \cup f_{2} \cup f_{3} \cup \ldots \\
& =\emptyset \cup F(\emptyset) \cup F(F(\emptyset)) \cup F(F(F(\emptyset))) \cup \ldots \\
& =\bigcup_{i \geq 0} F^{i}(\emptyset)
\end{aligned}
$$

1.2 Fixed-point semantics for loops

Returning to our original problem: we want to find $\mathcal{C} \llbracket$ while b do $c \rrbracket$, the (partial) function from stores to stores that is the denotation of the loop while b do c. We will do this by expressing $\mathcal{C} \llbracket \mathbf{w h i l e} b \mathbf{d o} c \rrbracket$ as the fixed point of a higher-order function $F_{b, c}$.

$$
\begin{aligned}
F_{b, c}: & (\text { Store } \rightharpoonup \text { Store }) \rightarrow(\text { Store } \rightharpoonup \text { Store }) \\
F_{b, c}(f)= & \{(\sigma, \sigma) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
& \left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in f\right)\right\}
\end{aligned}
$$

Compare the definition of our higher-order function $F_{b, c}$ to our recursive equation for $\mathcal{C} \llbracket$ while b do $c \rrbracket$.
The higher-order function $F_{b, c}$ takes in the partial function f, and acts like one iteration of the while loop, except that, instead of invoking itself when it needs to go around the loop again, it instead calls f.

We can now define the semantics of the while loop:

$$
\begin{aligned}
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket & =\bigcup_{i \geq 0} F_{b, c}{ }^{i}(\emptyset) \\
& =\emptyset \cup F_{b, c}(\emptyset) \cup F_{b, c}\left(F_{b, c}(\emptyset)\right) \cup F_{b, c}\left(F_{b, c}\left(F_{b, c}(\emptyset)\right)\right) \cup \ldots \\
& =\operatorname{fix}\left(F_{b, c}\right)
\end{aligned}
$$

Let's consider an example: while foo $<$ bar do foo $:=\mathrm{foo}+1$. Here $b=\mathrm{foo}<$ bar and $c=\mathrm{foo}:=\mathrm{foo}+1$.

$$
\begin{aligned}
F_{b, c}(\emptyset)= & \{(\sigma, \sigma) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
& \left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in \emptyset\right)\right\} \\
= & \{(\sigma, \sigma) \mid \sigma(\text { foo }) \geq \sigma(\text { bar })\} \\
F_{b, c}{ }^{2}(\emptyset)= & \{(\sigma, \sigma) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
& \left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in F_{b, c}(\emptyset)\right)\right\} \\
= & \{(\sigma, \sigma) \mid \sigma(\text { foo }) \geq \sigma(\text { bar })\} \cup \\
& \{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+1]) \mid \sigma(\text { foo })<\sigma(\text { bar }) \wedge \sigma(\text { foo })+1 \geq \sigma(\text { bar })\}
\end{aligned}
$$

But if $\sigma(\mathrm{foo})<\sigma(\mathrm{bar}) \wedge \sigma(\mathrm{foo})+1 \geq \sigma(\mathrm{bar})$ then $\sigma(\mathrm{foo})+1=\sigma($ bar $)$, so we can simplify further:

$$
\begin{aligned}
&=\{ (\sigma, \sigma) \mid \sigma(\text { foo }) \geq \sigma(\text { bar })\} \cup \\
&\{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+1]) \mid \sigma(\text { foo })+1=\sigma(\text { bar })\} \\
& F_{b, c}^{3}(\emptyset)=\{(\sigma, \sigma) \mid(\sigma, \text { false }) \in \mathcal{B} \llbracket b \rrbracket\} \cup \\
&\left\{\left(\sigma, \sigma^{\prime}\right) \mid(\sigma, \text { true }) \in \mathcal{B} \llbracket b \rrbracket \wedge \exists \sigma^{\prime \prime} .\left(\left(\sigma, \sigma^{\prime \prime}\right) \in \mathcal{C} \llbracket c \rrbracket \wedge\left(\sigma^{\prime \prime}, \sigma^{\prime}\right) \in F_{b, c}^{2}(\emptyset)\right)\right\} \\
&=\{(\sigma, \sigma) \mid \sigma(\text { foo }) \geq \sigma(\text { bar })\} \cup \\
&\{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+1]) \mid \sigma(\text { foo })+1=\sigma(\text { bar })\} \cup \\
&\{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+2]) \mid \sigma(\text { foo })+2=\sigma(\text { bar })\} \\
& F_{b, c}^{4}(\emptyset)=\{ \\
&\{(\sigma, \sigma) \mid \sigma(\text { foo }) \geq \sigma(\text { bar })\} \cup \\
&\{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+1]) \mid \sigma(\text { foo })+1=\sigma(\text { bar })\} \cup \\
&\{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+3]) \mid \sigma(\text { foo })+2=\sigma(\text { bar })\} \cup \\
&
\end{aligned}
$$

If we take the union of all $F_{b, c}{ }^{i}(\emptyset)$, we get the expected semantics of the loop.

$$
\begin{aligned}
\mathcal{C} \llbracket \mathbf{w h i l e} \text { foo }<\text { bar do foo }:=\text { foo }+1 \rrbracket=\{(\sigma, \sigma) \mid & \sigma(\text { foo }) \geq \sigma(\text { bar })\} \cup \\
& \{(\sigma, \sigma[\text { foo } \mapsto \sigma(\text { foo })+n]) \mid \sigma(\text { foo })+n=\sigma(\text { bar }) \wedge n \geq 1\}
\end{aligned}
$$

