
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Logic programming

Lecture 23 Tuesday, April 22, 2019

1 Logic programming

Logic programming has its roots in automated theorem proving. Logic programming differs from theorem
proving in that logic programming uses the framework of a logic to specify and perform computation.
Essentially, a logic program computes values, using mechanisms that are also useful for deduction. Logic
programming typically restricts itself to well-behaved fragments of logic.

We can think of logic programs as having two interpretations. In the declarative interpretation, a logic pro-
gram declares what is being computed. In the procedural interpretation, a logic program program describes
how a computation takes place. In the declarative interpretation, one can reason about the correctness of
a program without needing to think about underlying computation mechanisms; this makes declarative
programs easier to understand, and to develop. A lot of the time, once we have developed a declarative
program using a logic programming language, we also have an executable specification, that is, a procedu-
ral interpretation that tells us how to compute what we described. This is one of the appealing features of
logic programming. (In practice, executable specifications obtained this way are often inefficient; an under-
standing of the underlying computational mechanism is needed to make the execution of the declarative
program efficient.)

We’ll consider some of the concepts of logic programming by considering the programming language
Prolog, which was developed in the early 70s, initially as a programming language for natural language
processing.

2 Prolog

We start by introducing some terminology and syntax.

Variables X,Y, Z P Var
Predicate symbols p, q, r P PSym
Function symbols f, g, h, a, b, c P FSym
Terms s, t ::“ X | fpt1, . . . , tnq

Atoms A,H ::“ ppt1, . . . , tnq

We assume that each predicate symbol and function symbol has a fixed arity, that is, the number of
arguments associated with it. A constant (ranged over by a, b, c) is a function symbol with arity 0. For
example, alice and bob are constants. Suppose predicate symbol child has arity 2; then childpalice,bobq is
an atom, but childpaliceq is not.

An atom ppt1, . . . , tnq is a predicate symbol p with an appropriate number of terms for the arity of the
predicate symbol. Variables are meant to be place-holders for terms. We call a variable-free term a ground
term and a variable-free atom a ground atom.

We don’t assume any specific set of predicate symbols or function symbols. Indeed, the choice of sym-
bols and their arity is part of the logic program. There may be some common symbols that are useful in
many programs, such as a function symbol for integer addition. Function symbols do not have any implicit
meaning, even function symbols for things like addition. We’ll define the “meaning” of function symbols
and predicate symbols shortly.

Lecture 23 Logic programming

2.1 Unification

Variables are place-holders for terms. A substitution is a finite map from variables to terms. Much like the
type substitutions we saw in Lecture 14, we can define the application of a substitution σ to terms and
atoms, and define composition of substitutions.

Importantly, the concept of unification also applies to term substitutions. To recap: a substitution σ unifies
terms s and t if σpsq “ σptq. Substitution σ is the most general unifier of terms s and t if for any substitution
σ1 that unifies s and t, we have σ1 “ σ ˝ σ2 for some σ2. That is, a substitution is the most general unifier of
s and t if we can extend it to obtain any other unifier of s and t.

It may be the case that there is no unifier for some pairs of terms. For example, there is no substitution
that unifies fpX,Y q and gpaliceq. In that case, we say that unification fails.

We can extend the notion of unification and most general unifiers to sets of term equations ts1 “
t1, . . . , sn “ tnu.

Substitutions are the result of logic program computations. We’ll see this once we start defining logic
programs, which we now address.

2.2 Clauses

A clause has the following form:
A0 :- A1, . . . , Am.

where A0, A1, . . . , Am are atoms. We call A0 the head of the clause, and A1, . . . , Am the body. If the body is
an empty sequence of atoms, then we write A0.

Intuitively, we can think of a clause as meaning “A0 is true if A1, . . . , Am are all true.” We can think of a
clause as being the logical formula

@X1, . . . , Xk. A1 ^ ¨ ¨ ¨ ^Am ñ A0

where X1, . . . , Xk are the variables that appear in A0 and A1, . . . , Am.
A logic program is a set of clauses. A program is activated by providing an initial query, which is a

sequence of atoms (often just a single atom). A solution to a query A is a substitution σ such that σpAq is
true.

For example, consider the following logic program, a set of simple clauses that define what it means for
one list to be the concatenation of two other lists. We use rs as a 0-arity function symbol standing in for the
empty list, and rt1|t2s as syntactic sugar for conspt1, t2q, where function symbol cons is intended to be a list
constructor: t1 is the head of the list, and t2 is the rest of the list. Similarly, we use rt1, . . . , tns as sugar for
the list of the n elements t1, . . . , tn.

appendprs, Y, Y q.
appendprH|T s, Y, rH|U sq :- appendpT, Y, Uq.

The query appendpralices, rbobs, ralice,bobsq is true, since, based on our intuition of clauses, we have:

appendpralices, rbobs, ralice,bobsq is true if appendprs, rbobs, rbobsq is true.
appendprs, rbobs, rbobsq is true.

The result of the query appendpralices, rbobs, ralice,bobsq is the empty substitution.
The query appendpralices, rbobs, Zq has the (unique) solution of the substitution r Z ÞÑ ralice,bobs s.
The query appendpralices, Y, rbobsq has no solutions.

2.3 Example: type checking

Let’s consider a more interesting example of a Prolog program. We will write a Prolog program that ex-
presses the typing judgment for a simple lambda calculus. Interestingly, we can use the Prolog program to
both check that a lambda term is well typed, and also to infer types for the lambda term!

Page 2 of 4

Lecture 23 Logic programming

First, we describe how we will encode a lambda calculus program as a Prolog term.
Here is the syntax of the lambda calculus and how we translate lambda calculus expressions to a Prolog

term that our program will use. The function symbols literal, plus, var, lambda, and apply are used to encode
the program.

e ::“ n | x | λx. e | e1 e2 | e1 ` e2

T rrnss “ literalpnq
T rrxss “ varpxq

T rrλx. ess “ lambdapx, T rressq
T rre1 e2ss “ applypT rre1ss, T rre2ssq
T rre1 ` e2ss “ pluspT rre1ss, T rre2ssq

We represent types using the constant int (for type int) and terms arrowps, tq (for the type τ1 Ñ τ2, where
τ1 is represented by term s and τ2 is represented by term t).

We use predicate typepG,E, T q to mean that expression E has type T in variable context G. A context is
a list of pairs that map variable names to types.

We can now define our Prolog program that encodes, quite directly, the typing rules.

typepG, literalpXq, intq.
typepG, varpXq, T q :- memberprX,T s, Gq.
typepG,applypM,Nq, T q :- typepG,M,arrowpS, T qq, typepG,N, Sq.
typepG, lambdapX,Mq,arrowpS, T qq :- typeprrX,Ss|Gs,M, T q.

2.4 Computation

How do we go about finding a solution to a query? That is, what is the procedural interpretation of a logic
program?

We start with the empty substitution. Given a query, we look to see what clauses have heads that can
be unified with that query. If we find a clause with a head that has the same predicate symbol, then we
try to unify the query with the head of the clause by extending our substitution; if they can be unified,
then we regard each atom in the body of the clause as a query that we are trying to satisfy. We repeat,
recursively, until either unification fails, or we have satisfied all queries, and thus have a solution (which is
the substitution we have built up by successive unifications).

Now, for a given query, there may be many clauses that have a head with the same predicate symbol.
How do we choose which clause to consider? In logic programming, the choice is nondeterministic: you
just magically pick one that works.

However, for implementation purposes, we need some way to decide which clause to consider. In
Prolog, the order that clauses are declared in is important: clauses are considered in the order that they
are declared. Thus, in Prolog, a program is not a set of clauses, but rather a list of clauses. A depth-first
strategy is used for evaluation in Prolog: when unification fails, we backtrack to the last choice point (a point
in the computation at which there were more than one applicable clauses), and try a different choice; if
there are no more choices, then we backtrack to previous choice point. If no choice point is left, then we fail.
Backtracking to a choice point requires us to throw away the extensions to the substitution that we made
after that choice point.

2.5 Termination

A Prolog program may fail to terminate. The termination of a recursive Prolog program depends on the
order of the clauses, and on the order of atoms in clause bodies. For example, consider the following
program, that describes edges in a graph, and allows us to find which nodes are reachable from other

Page 3 of 4

Lecture 23 Logic programming

nodes (i.e., the reflexive, transitive closure of the edge relation).

edgepalice,bobq.
reachpX,Xq.
reachpX,Zq :- edgepX,Y q, reachpY,Zq.

When executing the query reachpalice, Y q, Prolog finds 2 solutions, Y mapping to alice and to bob. But
if we modify the order of the clauses, as shown below, Prolog fails to terminate (or, depending on the
implementation, may halt with a fatal error). (Why is that? Try executing the logic program according to
the rules for computation we defined above.)

edgepalice,bobq.
reachpX,Zq :- reachpY,Zq,edgepX,Y q.
reachpX,Xq.

Thus, the procedural interpretation of a Prolog program can be quite different from its logical inter-
pretation: a Prolog programmer must be aware of how the program will execute in order to guarantee
termination and efficiency.

3 Datalog

Datalog, like Prolog, is a logic programming language. However, the semantics of Datalog differ from the
semantics of Prolog. Syntactically, Datalog is a subset of Prolog.

In a Datalog program, the order of clauses are not important: a Datalog program can be thought of
as a set of clauses, rather than a list. Moreover, unlike Prolog queries, Datalog queries (on finite sets) are
guaranteed to terminate. Indeed, evaluation of Datalog programs is polynomial in the size of the program.
More specifically, it is possible to enumerate all the ground terms implied by a Datalog program (i.e., a set
of clauses) in time polynomial in the number of clauses in the program. (The degree of the polynomial is
essentially the maximum number of variables that appear in any rule.)

In order to achieve decidability, Datalog is less expressive than Prolog. In particular, Datalog makes the
following restrictions.
• Datalog does not allow functions with arity greater than 0. That is, the syntax for terms permits only

variables and constants.
Terms s, t ::“ X | f

So, for example, whereas appendpconspalice, []q, []q is a syntactically valid Prolog atom, it is not syn-
tactically valid Datalog.

• Datalog requires that any variable that appears in the head of a clause also appears in the body of the
clause. For example, the clause foopX,Y q :- barpXq. is not allowed in Datalog, since the variable Y
appears in the head of the clause, but not the body.

(There are also some additional restrictions when we allow negation. That is, Datalog restricts how terms
can be negated in order to ensure decidability.)

Page 4 of 4

