Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages
Large-step semantics

Lecture 4 Tuesday, February 11, 2020

1 Large-step semantics

So far we have defined the small step evaluation relation — C Config x Config for our simple language of
arithmetic expressions, and used its transitive and reflexive closure —* to describe the execution of multi-
ple steps of evaluation. In particular, if (e, o) is some start configuration, and (n, ¢’) is a final configuration,
the evaluation (e, o) —* (n, 0’) shows that by executing expression e starting with the store o, we get the
result n, and the final store o”’.

Large-step semantics is an alternative way to specify the operational semantics of a language. Large-step
semantics directly give the final result.

We'll use the same configurations as before, but define a large step evaluation relation:

|l € Config x FinalConfig
where

Config = Exp x Store
and Final Config = Int x Store C Config.

We write (e, o) | (n,c’) to mean that ({e, o), (n,0’)) €l. In other words, configuration (e, o) evaluates
in one big step directly to final configuration (n, ¢’). In general, the big step semantics takes a configuration
to an “answer”. For our language of arithmetic expressions, “answers” are a subset of configurations, but
this is not always true in general.

The large step semantics boils down to defining the relation |}. We use inference rules to inductively
define the relation |}, similar to how we specified the small-step operational semantics —.

INT _— VAR —Where r)=mn
ST T (mo) W Vo o)

(e1,0) I (n1,0") (e2,0") I (na,0")

ADDirg where n is the sum of n; and ny
<61 + e, J> ﬂ <TL, U/>

<611 U> ‘U <n17 U/I> <621 O—//> U’ <n2a U/>

MULLrg where n is the product of n; and ny
(e1 X ea,0) | (n,o’)

(e1,0) | (ny,0") (2,0 [z = nq]) I (ng,o’)

ASG
brG (x :=ey;ea,0) | (ng, o)

To see how we use these rules, here is a proof tree that shows that (foo := 3;foo x bar, o) || (21,0’) fora
store o such that o(bar) = 7, and ¢’ = o[foo — 3].

Lecture 4 Large-step semantics

VAR VAR
S o0, o) U (3, 0) M bar, o) U (7, 0)
INT gg ———mMm—— MULyrg

(3,0) | (3,0) (foo x bar, o’} |} (21,0")
(foo := 3;foo x bar, o) | (21,07)

ASGLRG

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-
first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

So far, we have specified the semantics of our language of arithmetic expressions in two different ways:
small-step operational semantics and large-step operational semantics. Are they expressing the same mean-
ing of arithmetic expressions? Can we show that they express the same thing?

Theorem (Equivalence of semantics). For all expressions e, stores o and o', and integers n, we have:
(e,o) | (n,0’) < (e,0) —* (n,0’).
Proof sketch.

e —>. We proceed by structural induction on expressions e. The property we will prove by induction
is:
P(e) =Vo,0’ € Store. ,Vn € Int. (e,0) || (n,0') = (e,0) —* (n, o)

We have to consider each of the possible axioms and inference rules for constructing an expression.

- Casee = 7.
Here, we are considering the case where the expression e is equal to some variable 2. Assume
that for some o, ¢/, and n we have (z,0) | (n,0’). That means that there is some derivation
using the axioms and inference rules of the large-step operational semantics, whose conclusion
is (z,0) || (n,0’). There is only one rule whose conclusion could look like this, the rule Vary.
That rule requires that n = o(z), and that o’ = o.
(This reasoning is an example of inversion: using the inference rules in reverse. That is, we know
that some conclusion holds—(z,) |} (n,o’)—and we examine the inference rules to determine
which rule must have been used in the derivation, and thus which premises must be true, and
which side conditions satisfied.)
Since n = o(x) we know that (z,0) — (n, o) also holds, by using the small-step axiom VAR. So
we can conclude that (z,0) —* (n, o) holds, which is what we needed to show.

— Casee=n.

Here, we consider the case where expression e is equal to some integer n. Assume that for some
o,0’, and n’ we have (n,o0) |} (n/,0’). Like the case above, by inversion, we know that the rule
Int;; was used to conclude that (n,0) || (n’,¢’),and son’ = nand ¢’ = 0.

So we need to show that (n, o) —* (n, o). But this holds trivially because of reflexivity of —*.
— Casee=c¢; + eo.
This is an inductive case. Expressions e; and e, are subexpressions of ¢, and so we can assume

that P(e;) and P(ez) hold. We need to show that P(e) holds. Let’s write out P(e;), P(ez), and
P(e) explicitly.

P(e1) =Vn,0,0": (e1,0) | (n,0') = (e1,0) —* (n,o’)
P()
P(e) =Vn,0,0" : {e1 +ea,0) | {n,0') = (e1 + ez,0) —* (n,0’)

e2) =Vn,0,0" : {ea,0) | (n,0’) = (e2,0) —* (

Page 2 of 3

Lecture 4 Large-step semantics

Assume that for some ¢,0’ and n we have (e; + e2,0) | (n,0’). We now need to show that
(e1 + ea,0) —* (n,o’).

We assumed that (e; + ez, 0) | (n,0’). Let’s use inversion again: there is some derivation whose
conclusion is (e; + e2,0) | (n,0’). By looking at the large-step semantic rules, we see that only
one rule could possible have a conclusion of this form: the rule ADD;rc. So that means that
the last rule use in the derivation was ADDyrs. But in order to use the rule ADDygg, it must
be the case that (e1,0) | (n1,0”) and (ez,0”) | (n2,0’) hold for some n; and ng such that
n = ny + ny (i.e., there is a derivation whose conclusion is {ej, o) | (n1,0”) and a derivation
whose conclusion is (ez,c”) || (na2,d’)).

*

Using the inductive hypothesis P(ey), since {(e1,0) || (n1,0”), we must have (e1,0) —* (n1,0").

Similarly, by P(ez), we have (e3,0”) —* (n2,0). By Lemma 1 below, we have

<61 + €2, O'> —)* <1’L1 =+ €9, O'//>
and by another application of Lemma 1 we have
(n1 + ez, 0") —* (ny +na,o’)
and by the rule ADD we have
(n1 +ng, 0’y — (n,d’).
Thus, we have (e; + e2,0) —* (n, ¢’), which proves this case.
— Case e = e; X eq. Similar to the case e = e¢; + ey above.
— Case ¢ = z := e1; ep. Omitted. Try it as an exercise.
e <. We proceed by mathematical induction on the number of steps (e, o) —* (n,d’).

- Base case. If (e,0) —™* (n,o¢’) in zero steps, then we must have e = n and ¢’ = o. Then,
(n,o) | (n, o) by the large-step operational semantics rule INT} k.

- Inductive case. Assume that (e,o) — (¢, 0"") —* (n,0’), and that (the inductive hypothesis)
(e”,0"y | (n,o’). Thatis, (¢”,0"”) —* (n,o’) takes m steps, and we assume that the property
holds for it ((¢”,0"”) || (n,0’)), and we are considering (e, o) —* (n,o’), which takes m+1 steps.
We need to show that (e, o) | (n, ¢’). This follows immediately from Lemma 2 below.

O
Lemma 1. If (e,0) —* (n, o) then for all ny, eq the following hold.
e (e+es,0) —* (n+ez,0)
e (e Xey,0) —*(nxeg o)

(
e (n1+e,o0) ny +n,o’)
(

N <
e (ny xe, o) —*(ng xn,o)
Proof. By (mathematical) induction on the number of evaluation steps in —*. O

Lemma 2. Foralle, ¢/, o,and n, if (e,0) — (e/,0"”) and (¢/,0") |} (n,d’), then (e, o) | (n,o’).

Page 3 of 3

