
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Large-step semantics

Lecture 4 Tuesday, February 11, 2020

1 Large-step semantics

So far we have defined the small step evaluation relation −→⊆ Config×Config for our simple language of
arithmetic expressions, and used its transitive and reflexive closure −→∗ to describe the execution of multi-
ple steps of evaluation. In particular, if 〈e, σ〉 is some start configuration, and 〈n, σ′〉 is a final configuration,
the evaluation 〈e, σ〉 −→∗ 〈n, σ′〉 shows that by executing expression e starting with the store σ, we get the
result n, and the final store σ′.

Large-step semantics is an alternative way to specify the operational semantics of a language. Large-step
semantics directly give the final result.

We’ll use the same configurations as before, but define a large step evaluation relation:

⇓ ⊆ Config× FinalConfig

where

Config = Exp× Store
and Final Config = Int× Store ⊆ Config.

We write 〈e, σ〉 ⇓ 〈n, σ′〉 to mean that (〈e, σ〉, 〈n, σ′〉) ∈⇓. In other words, configuration 〈e, σ〉 evaluates
in one big step directly to final configuration 〈n, σ′〉. In general, the big step semantics takes a configuration
to an “answer”. For our language of arithmetic expressions, “answers” are a subset of configurations, but
this is not always true in general.

The large step semantics boils down to defining the relation ⇓. We use inference rules to inductively
define the relation ⇓, similar to how we specified the small-step operational semantics −→.

INTLRG 〈n, σ〉 ⇓ 〈n, σ〉
VARLRG 〈x, σ〉 ⇓ 〈n, σ〉

where σ(x) = n

ADDLRG

〈e1, σ〉 ⇓ 〈n1, σ′′〉 〈e2, σ′′〉 ⇓ 〈n2, σ′〉
〈e1 + e2, σ〉 ⇓ 〈n, σ′〉

where n is the sum of n1 and n2

MULLRG

〈e1, σ〉 ⇓ 〈n1, σ′′〉 〈e2, σ′′〉 ⇓ 〈n2, σ′〉
〈e1 × e2, σ〉 ⇓ 〈n, σ′〉

where n is the product of n1 and n2

ASGLRG

〈e1, σ〉 ⇓ 〈n1, σ′′〉 〈e2, σ′′[x 7→ n1]〉 ⇓ 〈n2, σ′〉
〈x := e1; e2, σ〉 ⇓ 〈n2, σ′〉

To see how we use these rules, here is a proof tree that shows that 〈foo := 3; foo× bar, σ〉 ⇓ 〈21, σ′〉 for a
store σ such that σ(bar) = 7, and σ′ = σ[foo 7→ 3].



Lecture 4 Large-step semantics

ASGLRG

INTLRG 〈3, σ〉 ⇓ 〈3, σ〉
MULLRG

VARLRG 〈foo, σ′〉 ⇓ 〈3, σ′〉
VARLRG 〈bar, σ′〉 ⇓ 〈7, σ′〉

〈foo× bar, σ′〉 ⇓ 〈21, σ′〉
〈foo := 3; foo× bar, σ〉 ⇓ 〈21, σ′〉

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-
first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

So far, we have specified the semantics of our language of arithmetic expressions in two different ways:
small-step operational semantics and large-step operational semantics. Are they expressing the same mean-
ing of arithmetic expressions? Can we show that they express the same thing?

Theorem (Equivalence of semantics). For all expressions e, stores σ and σ′, and integers n, we have:

〈e, σ〉 ⇓ 〈n, σ′〉 ⇐⇒ 〈e, σ〉 −→∗ 〈n, σ′〉.

Proof sketch.

• =⇒. We proceed by structural induction on expressions e. The property we will prove by induction
is:

P (e) = ∀σ, σ′ ∈ Store. ,∀n ∈ Int. 〈e, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e, σ〉 −→∗ 〈n, σ′〉

We have to consider each of the possible axioms and inference rules for constructing an expression.

– Case e ≡ x.
Here, we are considering the case where the expression e is equal to some variable x. Assume
that for some σ, σ′, and n we have 〈x, σ〉 ⇓ 〈n, σ′〉. That means that there is some derivation
using the axioms and inference rules of the large-step operational semantics, whose conclusion
is 〈x, σ〉 ⇓ 〈n, σ′〉. There is only one rule whose conclusion could look like this, the rule VarLrg.
That rule requires that n = σ(x), and that σ′ = σ.
(This reasoning is an example of inversion: using the inference rules in reverse. That is, we know
that some conclusion holds—〈x, σ〉 ⇓ 〈n, σ′〉—and we examine the inference rules to determine
which rule must have been used in the derivation, and thus which premises must be true, and
which side conditions satisfied.)
Since n = σ(x) we know that 〈x, σ〉 −→ 〈n, σ〉 also holds, by using the small-step axiom VAR. So
we can conclude that 〈x, σ〉 −→∗ 〈n, σ〉 holds, which is what we needed to show.

– Case e ≡ n.
Here, we consider the case where expression e is equal to some integer n. Assume that for some
σ, σ′, and n′ we have 〈n, σ〉 ⇓ 〈n′, σ′〉. Like the case above, by inversion, we know that the rule
IntLrg was used to conclude that 〈n, σ〉 ⇓ 〈n′, σ′〉, and so n′ = n and σ′ = σ.
So we need to show that 〈n, σ〉 −→∗ 〈n, σ〉. But this holds trivially because of reflexivity of −→∗.

– Case e ≡ e1 + e2.
This is an inductive case. Expressions e1 and e2 are subexpressions of e, and so we can assume
that P (e1) and P (e2) hold. We need to show that P (e) holds. Let’s write out P (e1), P (e2), and
P (e) explicitly.

P (e1) = ∀n, σ, σ′ : 〈e1, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e1, σ〉 −→∗ 〈n, σ′〉
P (e2) = ∀n, σ, σ′ : 〈e2, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e2, σ〉 −→∗ 〈n, σ′〉
P (e) = ∀n, σ, σ′ : 〈e1 + e2, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e1 + e2, σ〉 −→∗ 〈n, σ′〉

Page 2 of 3



Lecture 4 Large-step semantics

Assume that for some σ, σ′ and n we have 〈e1 + e2, σ〉 ⇓ 〈n, σ′〉. We now need to show that
〈e1 + e2, σ〉 −→∗ 〈n, σ′〉.
We assumed that 〈e1 + e2, σ〉 ⇓ 〈n, σ′〉. Let’s use inversion again: there is some derivation whose
conclusion is 〈e1 + e2, σ〉 ⇓ 〈n, σ′〉. By looking at the large-step semantic rules, we see that only
one rule could possible have a conclusion of this form: the rule ADDLRG. So that means that
the last rule use in the derivation was ADDLRG. But in order to use the rule ADDLRG, it must
be the case that 〈e1, σ〉 ⇓ 〈n1, σ′′〉 and 〈e2, σ′′〉 ⇓ 〈n2, σ′〉 hold for some n1 and n2 such that
n = n1 + n2 (i.e., there is a derivation whose conclusion is 〈e1, σ〉 ⇓ 〈n1, σ′′〉 and a derivation
whose conclusion is 〈e2, σ′′〉 ⇓ 〈n2, σ′〉).
Using the inductive hypothesis P (e1), since 〈e1, σ〉 ⇓ 〈n1, σ′′〉, we must have 〈e1, σ〉 −→∗ 〈n1, σ′′〉.
Similarly, by P (e2), we have 〈e2, σ′′〉 −→∗ 〈n2, σ〉. By Lemma 1 below, we have

〈e1 + e2, σ〉 −→∗ 〈n1 + e2, σ
′′〉

and by another application of Lemma 1 we have

〈n1 + e2, σ
′′〉 −→∗ 〈n1 + n2, σ

′〉

and by the rule ADD we have
〈n1 + n2, σ

′〉 −→ 〈n, σ′〉.

Thus, we have 〈e1 + e2, σ〉 −→∗ 〈n, σ′〉, which proves this case.

– Case e ≡ e1 × e2. Similar to the case e = e1 + e2 above.

– Case e ≡ x := e1; e2. Omitted. Try it as an exercise.

• ⇐=. We proceed by mathematical induction on the number of steps 〈e, σ〉 −→∗ 〈n, σ′〉.

– Base case. If 〈e, σ〉 −→∗ 〈n, σ′〉 in zero steps, then we must have e ≡ n and σ′ = σ. Then,
〈n, σ〉 ⇓ 〈n, σ〉 by the large-step operational semantics rule INTLRG.

– Inductive case. Assume that 〈e, σ〉 −→ 〈e′′, σ′′〉 −→∗ 〈n, σ′〉, and that (the inductive hypothesis)
〈e′′, σ′′〉 ⇓ 〈n, σ′〉. That is, 〈e′′, σ′′〉 −→∗ 〈n, σ′〉 takes m steps, and we assume that the property
holds for it (〈e′′, σ′′〉 ⇓ 〈n, σ′〉), and we are considering 〈e, σ〉 −→∗ 〈n, σ′〉, which takesm+1 steps.
We need to show that 〈e, σ〉 ⇓ 〈n, σ′〉. This follows immediately from Lemma 2 below.

Lemma 1. If 〈e, σ〉 −→∗ 〈n, σ′〉 then for all n1, e2 the following hold.

• 〈e+ e2, σ〉 −→∗ 〈n+ e2, σ
′〉

• 〈e× e2, σ〉 −→∗ 〈n× e2, σ′〉

• 〈n1 + e, σ〉 −→∗ 〈n1 + n, σ′〉

• 〈n1 × e, σ〉 −→∗ 〈n1 × n, σ′〉

Proof. By (mathematical) induction on the number of evaluation steps in −→∗.

Lemma 2. For all e, e′, σ, and n, if 〈e, σ〉 −→ 〈e′, σ′′〉 and 〈e′, σ′′〉 ⇓ 〈n, σ′〉, then 〈e, σ〉 ⇓ 〈n, σ′〉.

Page 3 of 3


