
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Parametric polymorphism, Records, and Subtyping

Lecture 15 Tuesday, March 20, 2018

1 Parametric polymorphism

Polymorph means “many forms”. Polymorphism is the ability of code to be used on values of different types.

For example, a polymorphic function is one that can be invoked with arguments of different types. A

polymorphic datatype is one that can contain elements of different types.

Several kinds of polymorphism are commonly used in modern languages.

• Subtype polymorphism gives a single term many types using the subsumption rule. For example, a

function with argument τ can operate on any value with a type that is a subtype of τ .

• Ad-hoc polymorphism usually refers to code that appears to be polymorphic to the programmer, but

the actual implementation is not. A typical example is overloading: using the same function name for

functions with different kinds of parameters. Although it looks like a polymorphic function to the

code that uses it, there are actually multiple function implementations (none being polymorphic) and

the compiler invokes the appropriate one. Ad-hoc polymorphism is a dispatch mechanism: the type

of the arguments is used to determine (either at compile time or run time) which code to invoke.

• Parametric polymorphism refers to code that is written without knowledge of the actual type of the

arguments; the code is parametric in the type of the parameters. Examples include polymorphic

functions in ML, or generics in Java 5.

We consider parametric polymorphism in more detail. Suppose we are working in the simply-typed

lambda calculus, and consider a “doubling” function for integers that takes a function f , and an integer x,

applies f to x, and then applies f to the result.

doubleInt , λf : int→ int. λx : int. f (f x)

Lecture 15 Parametric polymorphism, Records, and Subtyping

We could also write a double function for booleans. Or for functions over integers. Or for any other type...

doubleBool , λf :bool→ bool. λx :bool. f (f x)

doubleFn , λf : (int→ int)→ (int→ int). λx : int→ int. f (f x)

...

In the simply typed lambda calculus, if we want to apply the doubling operation to different types of

arguments in the same program, we need to write a new function for each type. This violates the abstraction

principle of software engineering:

Each significant piece of functionality in a program should be implemented in just one place in

the source code. When similar functions are carried out by distinct pieces of code, it is generally

beneficial to combine them into one by abstracting out the varying parts.

In the doubling functions above, the varying parts are the types. We need a way to abstract out the type

of the doubling operation, and later instantiate this abstract type with different concrete types.

We extend the simply-typed lambda calculus with abstraction over types, giving the polymorphic lambda

calculus, also called System F.

A type abstraction is a new expression, written ΛX. e, where Λ is the upper-case form of the Greek letter

lambda, and X is a type variable. We also introduce a new form of application, called type application, or

instantiation, written e1 [τ].

When a type abstraction meets a type application during evaluation, we substitute the free occurrences

of the type variable with the type. Note that instantiation does not require the program to keep run-time

type information, or to perform type checks at run-time; it is just used as a way to statically check type

safety in the presence of polymorphism.

1.1 Syntax and operational semantics

The new syntax of the language is given by the following grammar.

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]

v ::= n | λx :τ. e | ΛX. e

The evaluation rules for the polymorphic lambda calculus are the same as for the simply-typed lambda

Page 2 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

calculus, augmented with new rules for evaluating type application.

E ::= [·] | E e | v E | E [τ]

e −→ e′

E[e] −→ E[e′]
β-REDUCTION

(λx :τ. e) v −→ e{v/x}

TYPE-REDUCTION
(ΛX. e) [τ] −→ e{τ/X}

Let’s consider an example. In this language, the polymorphic identity function is written as

ID , ΛX.λx :X.x

We can apply the polymorphic identity function to int, producing the identity function on integers.

(ΛX.λx :X.x) [int] −→ λx : int. x

We can apply ID to other types as easily:

(ΛX.λx :X.x) [int→ int] −→ λx : int→ int. x

1.2 Type system

We also need to provide a type for the new type abstraction. The type of ΛX. e is ∀X. τ , where τ is the type

of e, and may contain the type variable X . Intuitively, we use this notation because we can instantiate the

type expression with any type for X : for any type X , expression e can have the type τ (which may mention

X).

τ ::= int | τ1 → τ2 | X | ∀X. τ

Type checking expressions is slightly different than before. Besides the type environment Γ (which maps

variables to types), we also need to keep track of the set of type variables ∆. This is to ensure that a type

variable X is only used in the scope of an enclosing type abstraction ΛX. e. Thus, typing judgments are

now of the form ∆,Γ ` e : τ , where ∆ is a set of type variables, and Γ is a typing context. We also use an

additional judgment ∆ ` τ ok to ensure that type τ uses only type variables from the set ∆.

Page 3 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

∆,Γ ` n : int

∆ ` τ ok

∆,Γ ` x :τ
Γ(x) = τ

∆,Γ, x :τ ` e :τ ′ ∆ ` τ ok

∆,Γ ` λx :τ. e :τ → τ ′

∆,Γ ` e1 :τ → τ ′ ∆,Γ ` e2 :τ

∆,Γ ` e1 e2 :τ ′

∆ ∪ {X},Γ ` e :τ

∆,Γ ` ΛX. e :∀X. τ

∆,Γ ` e :∀X. τ ′ ∆ ` τ ok

∆,Γ ` e [τ] :τ ′{τ/X}

∆ ` X ok
X ∈ ∆

∆ ` int ok

∆ ` τ1 ok ∆ ` τ2 ok

∆ ` τ1 → τ2 ok

∆ ∪ {X} ` τ ok

∆ ` ∀X. τ ok

1.3 Examples

Let’s consider the doubling operation again. We can write a polymorphic doubling operation as

double , ΛX.λf :X → X.λx :X. f (f x).

The type of this expression is

∀X. (X → X)→ X → X

We can instantiate this on a type, and provide arguments. For example,

double [int] (λn : int. n+ 1) 7 −→ (λf : int→ int. λx : int. f (f x)) (λn : int. n+ 1) 7

−→∗ 9

Recall that in the simply-typed lambda calculus, we had no way of typing the expression λx. x x. In the

polymorphic lambda calculus, however, we can type this expression if we give it a polymorphic type and

instantiate it appropriately.

` λx :∀X. X → X.x [∀X. X → X] x : (∀X. X → X)→ (∀X. X → X)

2 Records

We have previously seen binary products, i.e., pairs of values. Binary products can be generalized in a

straightforward way to n-ary products, also called tuples. For example, 〈3, (), true, 42〉 is a 4-ary tuple con-

Page 4 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

taining an integer, a unit value, a boolean value, and another integer. Its type is int× unit× bool× int.

Records are a generalization of tuples. We annotate each field of record with a label, drawn from some

set of labels L. For example, {foo = 32, bar = true} is a record value with an integer field labeled foo and a

boolean field labeled bar. The type of the record value is written {foo : int, bar :bool}.

We extend the syntax, operational semantics, and typing rules of the call-by-value lambda calculus to

support records.

l ∈ L

e ::= · · · | {l1 = e1, . . . , ln = en} | e.l

v ::= · · · | {l1 = v1, . . . , ln = vn}

τ ::= · · · | {l1 :τ1, . . . , ln :τn}

We add new evaluation contexts to evaluate the fields of records.

E ::= · · · | {l1 = v1, . . . , li−1 = vi−1, li = E, li+1 = ei+1, . . . , ln = en} | E.l

We also add a rule to access the field of a record.

{l1 = v1, . . . , ln = vn}.li −→ vi

Finally, we add new typing rules for records. Note that the order of labels is important: the type of the

record value {lat = −40, long = 175} is {lat : int, long : int}, which is different from {long : int, lat : int}, the

type of the record value {long = 175, lat = −40}. In many languages with records, the order of the labels is

not important; indeed, we will consider weakening this restriction in the next section.

∀i ∈ 1..n. Γ ` ei :τi

Γ ` {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}

Γ ` e :{l1 :τ1, . . . , ln :τn}

Γ ` e.li :τi

3 Subtyping

Subtyping is a key feature of object-oriented languages. Subtyping was first introduced in SIMULA, in-

vented by Norwegian researchers Dahl and Nygaard, and considered the first object-oriented programming

Page 5 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

language.

The principle of subtyping is as follows. If τ1 is a subtype of τ2 (written τ1 ≤ τ2, and also sometimes as

τ1 ≤: τ2), then a program can use a value of type τ1 whenever it would use a value of type τ2. If τ1 ≤ τ2,

then τ1 is sometimes referred to as the subtype, and τ2 as the supertype.

We can express the principle of subtyping in a typing rule, often referred to as the “subsumption typing

rule” (since the supertype subsumes the subtype).

SUBSUMPTION

Γ ` e :τ τ ≤ τ ′

Γ ` e :τ ′

The subsumption rule says that if e is of type τ , and τ is a subtype of τ ′, then e is also of type τ ′.

Recall that we provided an intuition for a type as a set of computational entities that share some common

property. Type τ is a subtype of type τ ′ if every computational entity in the set for τ can be regarded as a

computational entity in the set for τ ′.

So what types are in a subtype relation? We will define inference rules and axioms for the subtype

relation ≤.

The subtype relation is both reflexive and transitive. These properties both seem reasonable if we think

of subtyping as a subset relation. We add inference rules that express this.

τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

3.1 Subtyping for records

Consider records and record types. A record consists of a set of labeled fields. Its type includes the types

of the fields in the record. Let’s define the type Point to be the record type {x : int, y : int}, that contains two

fields x and y, both integers. That is:

Point = {x : int, y : int}.

Lets also define

Point3D = {x : int, y : int, z : int}

as the type of a record with three integer fields x, y and z.

Because Point3D contains all of the fields of Point, and those have the same type as in Point, it makes

sense to say that Point3D is a subtype of Point: Point3D ≤ Point.

Page 6 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

Think about any code that used a value of type Point. This code could access the fields x and y, and

that’s pretty much all it could do with a value of type Point. A value of type Point3D has these same fields,

x and y, and so any piece of code that used a value of type Point could instead use a value of type Point3D.

We can write a subtyping rule for records.

{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}
k ≥ 0

But why not let the corresponding fields be in a subtyping relation? For example, if τ1 ≤ τ2 and τ3 ≤ τ4,

then is {foo : τ1, bar : τ3} a subtype of {foo : τ2, bar : τ4}? Turns out that this is the case so long as the fields

of records are immutable. More on this when we consider subtyping for references.

Also, we could relax the requirement that the order of fields must be the same. The following is a more

permissive subtyping rule for records.

∀i ∈ 1..n. ∃j ∈ 1..m. l′i = lj ∧ τj ≤ τ ′i

{l1 :τ1, . . . , lm :τm} ≤ {l′1 :τ ′1, . . . , l
′
n :τ ′n}

3.2 Subtyping for products

Like records, we can allow the elements of a product to be in a subtyping relation.

τ1 ≤ τ ′1 τ2 ≤ τ ′2

τ1 × τ2 ≤ τ ′1 × τ ′2

3.3 Subtyping for functions

Consider two function types τ1 → τ2 and τ ′1 → τ ′2. What are the subtyping relations between τ1,, τ2, τ ′1,, and

τ ′2 that should be satisfied in order for τ1 → τ2 ≤ τ ′1 → τ ′2 to hold?

Consider the following expression:

G , λf :τ ′1 → τ ′2. λx :τ ′1. f x.

This function has type

(τ ′1 → τ ′2)→ τ ′1 → τ ′2.

Page 7 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

Now suppose we had a function h :τ1 → τ2 such that τ1 → τ2 ≤ τ ′1 → τ ′2. By the subtyping principle, we

should be able to give h as an argument to G, and G should work fine. Suppose that v is a value of type τ ′1.

Then G h v will evaluate to h v, meaning that h will be passed a value of type τ1. Since h has type τ1 → τ2,

it must be the case that τ ′1 ≤ τ1. (What could go wrong if τ1 ≤ τ ′1?)

Furthermore, the result type ofG h v should be of type τ ′2 according to the type ofG, but h v will produce

a value of type τ2, as indicated by the type of h. So it must be the case that τ2 ≤ τ ′2.

Putting these two pieces together, we get the typing rule for function types.

τ ′1 ≤ τ1 τ2 ≤ τ ′2

τ1 → τ2 ≤ τ ′1 → τ ′2

Note that the subtyping relation between the argument and result types in the premise are in different

directions! The subtype relation for the result type is in the same direction as for the conclusion (primed

version is the supertype, non-primed version is the subtype); it is in the opposite direction for the argument

type. We say that subtyping for the function type is covariant in the result type, and contravariant in the

argument type.

3.4 Subtyping for locations

Suppose we have a location l of type τ ref, and a location l′ of type τ ′ ref. What should the relationship be

between τ and τ ′ in order to have τ ref ≤ τ ′ ref?

Let’s consider the following program R, that takes a location x of type τ ′ ref and reads from it.

R , λx :τ ′ ref. !x

The program R has the type τ ′ ref → τ ′. Suppose we gave R the location l as an argument. Then R l will

look up the value stored in l, and return a result of type τ (since l is type τ ref. Since R is meant to return a

result of type τ ′ ref, we thus want to have τ ≤ τ ′.

So this suggests that subtyping for reference types is covariant.

But consider the following program W , that takes a location x of type τ ′ ref, a value y of type τ ′, and

writes y to the location.

W , λx :τ ′ ref. λy :τ ′. x := y

This program has type τ ′ ref→ τ ′ → τ ′.

Page 8 of 9

Lecture 15 Parametric polymorphism, Records, and Subtyping

Suppose we have a value v of type τ ′, and consider the expressionW l v. This will evaluate to l := v, and

since l has type τ ref, it must be the case that v has type τ , and so τ ′ ≤ τ . But this suggests that subtyping

for reference types is contravariant!

In fact, subtyping for reference types must be invariant: reference type τ ref is a subtype of τ ′ ref if and

only if τ ≤ τ ′ and τ ′ ≤ τ . Indeed, to be sound, subtyping for any mutable location must be invariant.

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ ref

(In the premises for the rule above, why isn’t τ ≤ τ ′ and τ ′ ≤ τ equivalent to τ and τ ′ being exactly the

same? To see why not, consider the record types {foo : int, bar : int} and {bar : int, foo : int}.)

Interestingly, in the Java programming language, arrays are mutable locations but have covariant sub-

typing!

Suppose that we have two classes Person and Student such that Student extends Person (that is, Student is

a subtype of Person). The following Java code is accepted, since an array of Student is a subtype of an array

of Person, according to Java’s covariant subtyping for arrays.

Person[] arr = new Student[] { new Student(“Alice”) };

This is fine as long as we only read from arr. The following code executes without any problems, since arr[0]

is a Student which is a subtype of Person.

Person p = arr[0];

However, the following code, which attempts to update the array, has some issues.

arr[0] = new Person(“Bob”);

Even though the assignment is well-typed, it attempts to assign an object of type Person into an array of

Students! In Java, this produces an ArrayStoreException, indicating that the assignment to the array failed.

Page 9 of 9

