Induction
CS 152 (Spring 2020)

Harvard University

Thursday, February 6, 2020

Today, we learn to

» define an inductive set

» derive the induction principle of an inductive set
» prove properties of programs by induction

» use Coq to check your proofs

» believe in induction!

Expressing Program Properties

Progress

Ve € Exp. Vo € Store.
eithere € Intor de’. 0. <e,o >—< e 0’ >

Termination

Ve € Exp. Vog € Store. Jo € Store. dn € Int.
< e, 00 >—"<no>

Deterministic Result

Ve € Exp. Vog, 0,0’ € Store. Vn, n' € Int.
if <e,o0>—"<n,oc> and

< e, 00 >—"<n',0’ > then
n=n"and o =0o'.

Inductive Sets

Inductive Set: Definition

Axiom:

acA

Inductive Rule:

ag €A a, €A

acA

Grammar for Exp

er=x|n|let+e|leaxe|x=e;e

Inductive Set Exp

VAR ——— x € Var INT——n€lint
x € Exp n € Exp

et € Exp e € Exp
e+ e € Exp

ADD

et € Exp e € Exp

MuL
e1 X & € Exp

et € Exp e € Exp

AsaG x € Var

x:=e,6 € Exp

Grammar Equivalent to Inductive Set

er=x|n|let+e|leaxe|x=e;e

VAR —— x € Var INT——n€lint
x € Exp n € Exp

et € Exp e € Exp
€+ e € Exp

ADD

cE cE
MUL e Xp e xp

e X e € Exp

e € Exp e € Exp

Asc x € Var

x = e1; e € Exp

Inductive Set Exp: Example Derivation

VAR

f E INT 3¢E
ADD 00 € Exp € Exp VAR
(foo + 3) € Exp bar € Exp

MuL

(foo + 3) x bar € Exp

Inductive Set N (Natural Numbers)

The natural numbers can be inductively defined:

necN
0eN succ(n) € N

where succ(n) is the successor of n.

Inductive Set — (Step Relation)

The small-step evaluation relation — is an
inductively defined set. The definition of this set is
given by the semantic rules.

Inductive Set —* (Multi-Step Rel.)

<eo>—F<e o>

<eo>—<ée, 0 > <é, o >—*< e o >

<eo>—'<e o>

Inductive proofs

Mathematical induction

Mathematical induction

For any property P,
If

» P(0) holds

» For all natural numbers n, if P(n) holds then
P(n+ 1) holds

then for all natural numbers k, P(k) holds.

Mathematical induction

necN
0eN succ(n) € N

For any property P,
If

» P(0) holds

» For all natural numbers n, if P(n) holds then
P(n+ 1) holds

then for all natural numbers k, P(k) holds.

Induction on inductively-defined sets

Induction on inductively-defined sets

For any property P,
If

» Base cases: For each axiom

aeA,

P(a) holds.
» Inductive cases: For each inference rule

aacA ... a, €A
aeA ,

if P(a1) and ... and P(a,) then P(a).
then for all a € A, P(a) holds.

Inductive reasoning principle for set Exp

For any property P,
If

» For all variables x, P(x) holds.
» For all integers n, P(n) holds.

» For all e; € Exp and e, € Exp, if P(e;) and
P(e;) then P(e; +) holds.

» For all e; € Exp and e, € Exp, if P(e;) and
P(e;) then P(e; X &) holds.

» For all variables x and e; € Exp and e, € Exp,
if P(e1) and P(ey) then P(x := ey; &) holds.

then for all e € Exp, P(e) holds.

Case INT

INT——n€lint
n € Exp

For all integers n,
P(n) holds

Case ADD

cE cE
ADD €1 Xp & xp

e1+ e € Exp

For all e; € Exp and e, € Exp,
if P(e1) and P(e))
then P(e; + &) holds.

Inductive reasoning principle for set —
For any property P, If

VAR: For all variables x, stores o and integers n such that o(x) = n, P(< x,0 >——< n, o >) holds.

» ApD: For all integers n, m, p such that p = n+ m, and stores o, P(< n+ m, o >—< p, o >)
holds.

» MuL: For all integers n, m, p such that p = n X m, and stores o, P(< n X m, 0 >——< p, 0 >)
holds.

> Asc: For all variables x, integers n and expressions e € Exp,
P(< x:=n;e,0 >——< e, o[x — n] >) holds.

» LADD: For all expressions ey, e, e{ € Exp and stores o and o, if P(<e,o0>——< el/, o’ >)
holds then P(< e; + &2, 0 >——< €] + €, 0’ >) holds.

» RADD: For all integers n, expressions e, eé € Exp and stores o and o, if
P(< e, 0 >—< eé, o’ >) holds then P(< n+ ey, 0 >——< n+ eé, o’ >) holds.

» LMuL: For all expressions e, e, e{ € Exp and stores o and o, if P(< e,o0 >——< e{, o’ >)
holds then P(< e X e,0 >——< e X €, 0’ >) holds.

» RMuL: For all integers n, expressions e;, e2/ € Exp and stores o and o, if
P(< ey, 0 >—+< €}, 0’ >) holds then P(< n X ey, 0 >——< n X e5, o’ >) holds.

> Ascl: For all variables x, expressions ey, ep, e{ € Exp and stores o and o, if
P(< e, 0 >—< e{,0’ >) holds then P(< x := ej; e, 0 >——< x := e]; 3,0’ >) holds.

then for all < e,o0 >—< €,0’ >,
P(< e, >—< €',0’ >) holds.

Proving progress

Progress (Statement)

Progress: For each store o and expression e that is
not an integer, there exists a possible transition for
< e, o >

Ve € Exp. Vo € Store.
either e € Intor 3e’,0’. <e,o0 >—< €, 0’ >

Progress (Rephrased)

P(e) =Vo.(e € Int)V(Ie',0’. <e, o >—< €, 0 >)

Progress (Rephrased)

Ve € Exp. Vo € Store.
either e € Intor 3¢’ 0/. <e,o >—< e, 0’ >

P(e) =Vo.(e € Int)V(Ie',0’. <e, o0 >—< €, 0 >)

Example: Proving progress

by “structural induction on the expressions e

We will prove by structural induction on expressions
Exp that for all expressions e € Exp we have

P(e) =Vo.(e € Int)V(Ie,o'. <e o >—< e o >).

Consider the possible cases for e.

Proving progress: Case e = x

By the VAR axiom, we can evaluate < x,0 > in
any state: < x,0 >—< n,o >, where n = o(x).
So € = nis a witness that there exists e’ such that
< x,0 >—< €',0 >, and P(x) holds.

Proving progress: Case e = x

VAR where n = o(x)
< X,0>—< n,o >

By the VAR axiom, we can evaluate < x,c > in
any state: < x,0 >—< n,o >, where n = o(x).
So €’ = nis a witness that there exists ¢’ such that
< x,0 >—< €',0 >, and P(x) holds.

Proving progress: Case e = n

Then e € Int, so P(n) trivially holds.

Proving progress: Case e = e; + &
This is an inductive step. The inductive hypothesis
is that P holds for subexpressions e; and e,. We
need to show that P holds for e. In other words, we
want to show that P(e;) and P(ey) implies P(e).
Let's expand these properties. We know that the
following hold:

P(e) =Vo. (e; € Int) vV (3e',0'. < ey, 0 >—s< €, 0’ >)
P(e) =Vo. (e € Int) vV (3€',0'. < e&,0 >—< €, 0" >)

and we want to show:
P(e) =Vo.(e € Int)V(Ie',0'. <e,0 >—< €, 0 >)

We must inspect several subcases.

Proving progress: Case e = e + e,
e, & € Int

First, if both e; and e, are integer constants, say
e1 = m and e = ny, then by rule ADD we know
that the transition < ny + n, 0 >—< n,o > is
valid, where n is the sum of n; and n,. Hence,
P(e) = P(ny + ny) holds (with witness e’ = n).

Proving progress: Case e = e + e,
€1 € Int

Second, if e; is not an integer constant, then by the
inductive hypothesis P(e;) we know that

< e,0 >—< €, ,0' > for some € and ¢’. We can
then use rule LADD to conclude
<e+e,0><e+e,0 >, s0

P(e) = P(e1 + &) holds.

Proving progress: Case e = e + e,
e1 € Int, & £ Int

Third, if e; is an integer constant, say e; = ny, but
e, is not, then by the inductive hypothesis P(e;) we
know that < e,0 >——< €', 0’ > for some €' and
o’. We can then use rule RADD to conclude
<m+te,c>—<m+e, 0 > s0

P(e) = P(n1 + &) holds.

Proving progress: Remaining cases

Case e = e X & and case e = x := ¢e;; &. Ihese
are also inductive cases, and their proofs are similar
to the previous case. [Note that if you were writing
this proof out for a homework, you should write
these cases out in full]

Incremental update

For all expressions e and stores o, if

< e, o >—<e, o > then

either o = o’ or

there is some variable x and integer n such that
o' =o[x — n].

Proving incremental update

We proceed by induction on the derivation of

< e,o>—< €, 0’ >. Suppose we have e, o, €
and ¢’ such that < e,o0 >—< €',0’ >. The
property P that we will prove of e, o, € and ¢,
which we will write as P(< e,0 >—< €',0’ >), is
that either o = ¢’ or there is some variable x and
integer n such that o/ = o[x — n|:

P(<eo>—<e€, 0 >)=
o =0V (3x € Var,n € Int. o' = o[x — n]).

Consider the cases for the derivation of
<eo>—<ée, 0 >

Proving incremental update: Case ADD

This is an axiom. Here, e=n+ mand € = p
where p is the sum of m and n, and ¢/ = 0. The
result holds immediately.

Proving incremental update: Case LADD

This is an inductive case. Here, e = ¢; + & and

€ =e+eand <e,0 >—< e, 0 > Bythe
inductive hypothesis, applied to

< e1,0 >—< ef,0’ >, we have that either 0 = ¢’
or there is some variable x and integer n such that
o' = o[x — n], as required.

Proving incremental update: Case ASG

This is an axiom. Here e = x :=n; e, and €' = e,
and ¢’ = o[x — n]. The result holds immediately.

Proving incremental update: remaining
cases

We leave the other cases (VAR, RADD, LMuL,
RMuL, MuL, and Asc1) as exercises. Seriously,
try them. Make sure you can do them. Go on.

Interlude: What if induction weren’t true?

Peano Axioms

= =

0O -1 -2 =53 — ...

zero is a number.
If ais a number, the successor of a is a number.
zero is not the successor of a number.

Two numbers of which the successors are equal
are themselves equal.

(induction axiom.) If a set S of numbers
contains zero and also the successor of every
number in S, then every number is in S.

Monster Chains

0 -1 -2 =53 — ...
.= —al 530 5> al a2 - a3 — ...

.= —bl - b0 — bl b2 — b3 — ...

