Definitional Translation
CS 152 (Spring 2020)

Harvard University

Thursday, February 27, 2020

1/49

Today, we will learn about

» Definitional Translation
» Evaluation Contexts

» Soundness and Completeness

2/49

Definitional Translation

» Denotational semantics: define the meaning of
IMP commands as mathematical functions
from stores to stores.

» Definitional translation: define the meaning of
language constructs by translation to another
language.

» A form of denotational semantics, but instead
of the target language being mathematics, it is
a simpler programming language.

3/49

» Definitional translation does not necessarily
produce clean or efficient code

» Rather, it defines the meaning of the source
language in terms of the target language.

4/49

Evaluation Contexts

Recall the syntax and CBV operational semantics
for the lambda calculus.

ex=x|Mx.el|e &

vV ii=)Xx.e

e — € e— ¢

e 6 — € & ve—ve

[-REDUCTION

(Ax.e) v— e{v/x}

5/49

Evaluation Contexts

» Of the operational semantics rules, only the
[-reduction rule told us how to “reduce” an
expression

» The other two rules were simply telling us the
order to evaluate expressions in

6/49

Evaluation Contexts

The operational semantics of many of the languages
we will consider have this feature: there are two
kinds of rules, one kind specifying evaluation order,
and the other kind specifying the “interesting”
reductions.

7/49

Evaluation Contexts

Evaluation contexts provide us with a mechanism to
separate out these two kinds of rules.

8/49

An evaluation context E (sometimes written E[]) is
an expression with a “hole” in it, that is with a
single occurrence of the special symbol [-] (called
the “hole”) in place of a subexpression.

9/49

The following grammar defines evaluation contexts
for the pure CBV lambda calculus.

E:=[]|Ee|VvE

10/49

We write E[e] to mean the evaluation context E
where the hole has been replaced with the
expression e.

[T (Ax.x)
=(\z.z2) []
= (

[] M. x x) ((Ay.y) (Ay.y))

1
2
3

EfAy.y y] = (Ay.y y) Ax.x
Ex[Mx. \y.x] = (A\z.z z) (Ax. Ay.x)

Es[M. g . fgl=((Af. 2 g.fg) M. xx)((Ay.y) (\y.y))

11/49

Evaluation semantics for the pure CBV
lambda calculus

e — ¢

X E — e

B-REDUCTION
(Ax.e) v — e{v/x}

12/49

Evaluation semantics for the pure CBV
lambda calculus

e — ¢

X T Elel

[-REDUCTION
(Ax.e) v — e{v/x}

Note that these ensure that we evaluate the left

hand side of an application to a value, and then

evaluate the right hand side of an application to a

value before applying S-reduction.

13/49

E =] (Ax.x)

» Here E[y] is a valid A\-calculus term, namely
y (Ax.x).

» But the evaluation gets stuck as neither, CTXT
nor S-REDUCTION can be applied.

» This is same as our previous definition of
operational semantics.

14 /49

eo = ((Ax.x+30) (5+2))+5

In this example assume that we have integers and
addition, and that the evaluation contexts are given

by
E:=[]|Ee|vE|E+e|v+E.

15/49

eo = ((Ax.x+30) (5+2))+5

542 —7
CTXT +

(Ox. x+30) (5+2)) +5 — ((Ax.x +30) 7) +5

16 /49

eo = ((Ax.x+30) (5+2))+5

[-REDUCTION

(Ax.x+30) 7 — 7+30

CTXT
(Ax.x+30)7)+5— (7+30)+5

17/49

eo = ((Ax.x+30) (5+2))+5

7+30 — 37

CTXT
(7+30)+5—37+5

18/49

eo = ((Ax.x+30) (5+2))+5

37+5 — 42

We can also specify the operational semantics of
CBN lambda calculus using evaluation contexts:

E:=[]|Ee

e — €
Ele] — E[€']

CTXT

[-REDUCTION

(Ax.e1) &6 — er{e/x}

20/49

Multi-argument functions and currying

Our syntax for functions restricted us to functions
that have a single argument: Ax. e. We could define
a language that allows functions to have multiple
arguments.

21/49

Multi-argument functions and currying

er=x|Axqg,....,xp.€| e e ... €

Here, a function A\xg, ..., x,. e takes n arguments,
with names x; through x,. In a multi argument
application ¢y e; ... e,, we expect e to evaluate to
an n-argument function, and e, ..., e, are the
arguments that we will give the function.

22/49

We can define a CBV operational semantics for the
multi-argument lambda calculus as follows.

E:=[]|w ... vi1Eei ... e

e — €
Ele] — E[€']

[-reduction

(A1, ..oy Xn-€0) Vi oo vy — eo{vi/xiH{wva/xa} . {va/x0}

23/49

The evaluation contexts ensure that we evaluate a
multi-argument application ¢y €; ... e, by
evaluating each expression from left to right down
to a value.

24/49

» The multi-argument lambda calculus isn’'t any
more expressive that the pure lambda calculus.

» Any multi-argument lambda calculus program
can be translated into an equivalent pure
lambda calculus program.

25 /49

» We define a translation function 7] that
takes an expression in the multi-argument
lambda calculus and returns an equivalent
expression in the pure lambda calculus.

» That is, if e is a multi-argument lambda
calculus expression, T [e] is a pure lambda
calculus expression.

26 /49

The translation function

TIx] = x
Tl -, Xp- €] = M. ... Ax. Te]

Tleoere2 ... e =(..((Teo] Tlerl) Tled)--- Tlenl)

27 /49

Currying

The process of rewriting a function that takes
multiple arguments as a chain of functions that
each take a single argument is called currying.

28/49

Currying

» Consider a function in A x B — C.

» Currying this function produces an element of
A— (B — ().

» The curried version of the function takes an
argument from domain A, and returns a
function that takes an argument from domain
B and produces a result of domain C.

29/49

Products and let

» A product is a pair of expressions (e, €).

» If e; and e, are both values, then we regard the
product as also being a value.

» Given a product, we can access the first or
second element using the operators #1 and #2
respectively.

30/49

Products and let

#1 (V17 V2) — V1

#2 (Vl, V2) — .

31/49

Lambda calculus with products and let
expressions

er=x|Xx.e|le &

| (e1, &) | #le|#2e

|let x = e in &

vi=Ax.e| (v, n)

32/49

Lambda calculus with products and let
expressions

er=x|x.e|le &

| (e1,e) | #le|#2e

| let x = e in &

vi=Ax.e| (v, n)

In this language, values are either functions or pairs
of values.

33/49

We define a small-step CBV operational semantics
for the language using evaluation contexts.

E:=[]|Ee|vE]|(Ee)]|(v,E)
| #1 E
|42 E

|let x = E in e

34/49

e — €
Ele] — E[€']

B-REDUCTION

(Ax.e) v— e{v/x}

#1 (vi, o) — vy #2 (vi,v2) — v

let x =vin e — e{v/x}

35/49

Lambda calculus with products and let to
the pure lambda calculus

TIx] = x
T x.e] = Ax. Te]
T|[el ez]l = T[[el]l T[[e2]|
Tl(e1,)] = (Ax. Ay. Af.f x y) Tle] Tlel
TI#1 €] = Tle] (Ax. Ay.x)
TI#2 €] = Tle] (Ax. Ay.y)
Tllet x = e in &] = (M. T[ex]) Tleil

» We can give an equivalent semantics by
translation to the pure CBV lambda calculus.

» We encode a pair (e, &) as a value that takes
a function f, and applies f to v; and v», where
vi and v, are the result of evaluating e; and e
respectively.

37/49

» The projection operators pass a function to the
encoding of pairs that selects either the first or
second element as appropriate.

» The expression let x = e; in & Is equivalent to
the application (Ax. &) ey.

38/49

CBN to CBV

We can translate a call-by-name program into a
call-by-value program.

39/49

CBN to CBV

» In CBV, arguments to functions are evaluated
before the function is applied

» In CBN, functions are applied as soon as
possible.

» In the translation, we delay the evaluation of
arguments by wrapping them in a function.

40/49

CBN to CBV

>

This is called a thunk: wrapping a computation
in a function to delay its evaluation.

Since arguments to functions are turned into
thunks, when we want to use an argument in a
function body, we need to evaluate the thunk.

We do so by applying the thunk (which is
simply a function)

It doesn’t matter what we apply the thunk to,
since the thunk’s argument is never used.

41/49

CBN to CBV

TIx] =x (Ay.y)
T[> x. e] = Ax. Te]
T|[e1 62]] = T[[e1]| ()\Z Tl[ez]])

where z is not a free variable of &

CBV to CBN

It may be worth thinking about translation in the
opposite direction i.e. CBV to CBN. One approach
is to use continuations which will be introduced in
the next lecture.

43 /49

Adequacy of translation

We would like the translation to be correct, that is,
to preserve the meaning of source programs.

44 /49

Adequacy of translation

We would like an expression e in the source
language to evaluate to a value v if and only if the
translation of e evaluates to a value v’ such that v/
is “equal to" v.

45 /49

Adequacy of translation

There are two criteria for a translation to be
adequate: soundness and completeness.

46 /49

Suppose Exp,,. is the set of source language
expressions, and that — . and —,, are the
evaluation relations for the source and target
languages respectively.

47/49

Soundness

A translation is sound if every target evaluation
represents a source evaluation:

Ve € Expg,.. if T[e] —, v/ then v. e —{ v

and V' equivalent to v

48 /49

Completeness

A translation is complete if every source evaluation
has a target evaluation.

*
src

!/

Ve € Expg,.. if e —; v then 3V'. T[e] —;, v

and V' equivalent to v

49 /49

	Products and let

