
References and Continuations
CS 152 (Spring 2020)

Harvard University

Tuesday, March 3, 2020

1 / 37

Today, we will learn about

I References

I Continuations

I CPS translation

2 / 37

References

I We introduce constructs for creating, reading,
and updating memory locations, also called
references.

I The resulting language is still a functional
language (since functions are first-class values),
but expressions can have side-effects, that is,
they can modify state.

3 / 37

References: syntax

e ::= x | λx . e | e0 e1 | ref e | !e | e1 := e2 | `

v ::= λx . e | `

4 / 37

References: syntax

e ::= x | λx . e | e0 e1 | ref e | !e | e1 := e2 | `
v ::= λx . e | `

I ref e creates a new memory location (like a
malloc), and sets the initial contents of the
location to (the result of) e.

I The expression ref e itself evaluates to a
memory location `.

5 / 37

References: syntax

e ::= x | λx . e | e0 e1 | ref e | !e | e1 := e2 | `
v ::= λx . e | `

I The expression !e assumes that e evaluates to
a memory location, and !e evaluates to the
current contents of the memory location.

I Expression e1 := e2 assumes that e1 evaluates
to a memory location `, and updates the
contents of ` with (the result of) e2.

6 / 37

References

I Locations ` are not part of the surface syntax
of the language, the syntax that a programmer
would write.

I They are introduced only by the operational
semantics.

7 / 37

References: small-step CBV operational
semantics.

E ::= [·] | E e | v E | ref E | !E | E := e | v := E

< e, σ >−→< e ′, σ′ >

< E [e], σ >−→< E [e ′], σ′ >

β-reduction
< (λx . e) v , σ >−→< e{v/x}, σ >

8 / 37

References: small-step CBV operational
semantics.

Alloc
< ref v , σ >−→< `, σ[` 7→ v] >

` 6∈ dom(σ)

Deref
< !`, σ >−→< v , σ >

σ(`) = v

Assign
< ` := v , σ >−→< v , σ[` 7→ v] >

9 / 37

References do not add any expressive
power to the lambda calculus

10 / 37

References do not add any expressive
power to the lambda calculus

It is possible to translate lambda calculus with
references to the pure lambda calculus.

11 / 37

Continuations

So far we have seen a number of language features
that extend lambda calculus, and have translated
many of these into the pure lambda calculus:

T [[λx . e]] = λx . T [[e]]

T [[e1 e2]] = T [[e1]] T [[e2]]

12 / 37

Continuations

I This style of translation works well when the
source language is similar to the target
language.

I However, when the control structures of the
source and target languages differ considerably,
it doesn’t work as well.

13 / 37

Continuations

Continuations are a programming technique that
may be used directly by a programmer, or used in
program transformations by a compiler.

14 / 37

Continuations

Intuitively, a continuation represents “the rest of the
program.”

15 / 37

if foo < 10 then 32 + 6 else 7 + bar

Consider the evaluation of the expression foo < 10.

16 / 37

if foo < 10 then 32 + 6 else 7 + bar

When we finish evaluating foo < 10, we will
evaluate the if statement, and then evaluate the
appropriate branch.

17 / 37

if foo < 10 then 32 + 6 else 7 + bar

The continuation of the subexpression foo < 10 is
the rest of the computation that will occur after we
evaluate the subexpression.

18 / 37

if foo < 10 then 32 + 6 else 7 + bar

We can write this continuation as a function that
takes the result of the subexpression:

(λy . if y then 32 + 6 else 7 + bar) (foo < 10)

19 / 37

if foo < 10 then 32 + 6 else 7 + bar

(λy . if y then 32 + 6 else 7 + bar) (foo < 10)

The evaluation order and result remain the same,
we just extracted the continuation of the
subexpression in to a function.

20 / 37

(λx . x) ((1 + 2) + 3) + 4

21 / 37

(λx . x) ((1 + 2) + 3) + 4

We start by defining a continuation for the
outermost evaluation context, which takes a value,
and applies the identity function to it.

k0 = λv . (λx . x) v

22 / 37

(λx . x) ((1 + 2) + 3) + 4

The evaluation context that is evaluated
next-to-last takes a value, adds 4 to it, and then
passes the result to k0.

k1 = λa. k0 (a + 4)

Likewise, for the next evaluation contexts.

k2 = λb. k1 (b + 3)

k3 = λc . k2 (c + 2)

23 / 37

(λx . x) ((1 + 2) + 3) + 4

k0 = λv . (λx . x) v

k1 = λa. k0 (a + 4)

k2 = λb. k1 (b + 3)

k3 = λc . k2 (c + 2)

The program itself is now equivalent to k3 1. We
can rewrite the above as

let c = 1 in
let b = c + 2 in
let a = b + 3 in
let v = a + 4 in
(λx . x) v

24 / 37

This is fairly close to some machine instructions of
the form:

set c , 1
add b, c , 2
add a, b, 3
add v , a, 4
call id, v

25 / 37

Using continuations, functions can be transformed
into “functions that don’t return”—functions that
take, besides the usual arguments, an additional
argument representing a continuation.

26 / 37

CPS

When the function finishes, it invokes the
continuation on its result, instead of returning the
result to its caller. Writing functions in this way is
usually referred to as Continuation-Passing Style.

27 / 37

CPS version of factorial

FACT cps = Y λf . λn, k .

if n = 0 then k 1 else f (n − 1) (λv . k (n ∗ v))

28 / 37

CPS translation

I We can translate lambda calculus programs
into continuation-passing style.

I We define a translation function CPS[[·]]

I It takes a CBV lambda calculus expression, and
translates the expression to a CBV lambda
calculus expression in continuation-passing
style.

29 / 37

From lambda calculus with pairs to CPS

e ::= x | λx . e | e1 e2 | n | e1+e2 | (e1, e2) | #1 e | #2 e

30 / 37

From lambda calculus with pairs to CPS

The translation CPS[[e]] will produce a function
whose argument is the continuation to which to
pass the result.

That is, for all expressions e, the translation is of the
form CPS[[e]] = λk , where k is a continuation.

31 / 37

From lambda calculus with pairs to CPS

We will both assume and guarantee that for any
expression e, the translation CPS[[e]] = λk will
apply k to the result of evaluating e.

32 / 37

From lambda calculus with pairs to CPS

CPS[[n]]k = k n

CPS[[e1 + e2]]k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n + m)))

n is not a free variable of e2

CPS[[(e1, e2)]]k = CPS[[e1]] (λv . CPS[[e2]] (λw . k (v ,w)))

v is not a free variable of e2

33 / 37

From lambda calculus with pairs to CPS

CPS[[#1 e]]k = CPS[[e]] (λv . k (#1 v))

CPS[[#2 e]]k = CPS[[e]] (λv . k (#2 v))

CPS[[x]]k = k x

CPS[[λx . e]]k = k (λx , k ′. CPS[[e]]k ′)

k ′ is not a free variable of e

CPS[[e1 e2]]k = CPS[[e1]] (λf . CPS[[e2]] (λv . f v k))

f is not a free variable of e2

34 / 37

Example: CPS[[(λa. a + 6) 7]]ID

= CPS[[(λa. a + 6)]] (λf . CPS[[7]] (λv . f v ID))

= (λf . CPS[[7]] (λv . f v ID)) (λa, k ′. CPS[[a + 6]]k ′)

= (λf . (λv . f v ID) 7) (λa, k ′. CPS[[a + 6]]k ′)

= (λf . (λv . f v ID) 7) (λa, k ′. CPS[[a]]

(λn. CPS[[6]] (λm. k ′ (m + n))))

35 / 37

Example: CPS[[(λa. a + 6) 7]]ID

= (λf . (λv . f v ID) 7) (λa, k ′. CPS[[a]]

(λn. CPS[[6]] (λm. k ′ (m + n))))

= (λf . (λv . f v ID) 7) (λa, k ′. CPS[[a]] (λn. (λm. k ′ (m + n)) 6))

= (λf . (λv . f v ID) 7) (λa, k ′. (λn. (λm. k ′ (m + n)) 6) a)

36 / 37

Example: CPS[[(λa. a + 6) 7]]ID

(λf . (λv . f v ID) 7) (λa, k ′. (λn. (λm. k ′ (m + n)) 6) a)

−→ (λv . (λa, k ′. (λn. (λm. k ′ (m + n)) 6) a) v ID) 7

−→ (λa, k ′. (λn. (λm. k ′ (m + n)) 6) a) 7 ID

−→ (λn. (λm. ID (m + n)) 6) 7

−→ (λm. ID (m + 7)) 6

−→ ID (6 + 7)

−→ ID 13

−→ 13

37 / 37

