Curry-Howard Isomorphism; Existential Types CS 152 (Spring 2020)

Harvard University

Thursday, March 26, 2020

Today, we will learn about

Curry-Howard Isomorphism

Existential types

Curry-Howard Isomorphism

Conjunction = Product

$\mathsf{Disjunction} = \mathsf{Sum}$

Function Types?

Parametric Polymorphism

What about False?

Example 1: From Formula to Type

Example 2: From Type to Formula

Negation and Continuations

Existential Types

Syntax

```
\begin{array}{l} e ::= x \mid \lambda x \colon \tau. \ e \mid e_1 \ e_2 \mid n \mid e_1 + e_2 \\ \mid \{ \ I_1 = e_1, \dots, I_n = e_n \ \} \mid e.I \\ \mid \mathsf{pack} \ \{\tau_1, e\} \ \mathsf{as} \ \exists X. \ \tau_2 \\ \mid \mathsf{unpack} \ \{X, x\} = e_1 \ \mathsf{in} \ e_2 \\ v ::= n \mid \lambda x \colon \tau. \ e \mid \{ \ I_1 = v_1, \dots, I_n = v_n \ \} \\ \mid \mathsf{pack} \ \{\tau_1, v\} \ \mathsf{as} \ \exists X. \ \tau_2 \\ \tau ::= \mathsf{int} \mid \tau_1 \to \tau_2 \mid \{ \ I_1 \colon \tau_1, \dots, I_n \colon \tau_n \ \} \mid X \mid \exists X. \ \tau \end{array}
```

Example: Counter ADT

Example: Counter ADT, ctd

Operational Semantics

$$E ::= \cdots \mid \mathsf{pack} \ \{\tau_1, E\} \ \mathsf{as} \ \exists X. \ \tau_2 \mid \mathsf{unpack} \ \{X, x\} = E \ \mathsf{in} \ e$$

unpack $\{X,x\} = (\text{pack } \{\tau_1,v\} \text{ as } \exists Y. \ \tau_2) \text{ in } e \longrightarrow e\{v/x\}\{\tau_1/X\}$

Typing rules

$$\frac{\Delta, \Gamma \vdash e : \tau_2 \{\tau_1/X\}}{\Delta, \Gamma \vdash \mathsf{pack}\ \{\tau_1, e\} \ \mathsf{as}\ \exists X.\ \tau_2 : \exists X.\ \tau_2}$$

$$\Delta, \Gamma \vdash e_1 : \exists X. \ \tau_1 \quad X \not\in \Delta$$
$$\Delta \cup \{X\}, \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \quad \Delta \vdash \tau_2 \text{ ok}$$
$$\Delta, \Gamma \vdash \text{unpack } \{X, x\} = e_1 \text{ in } e_2 : \tau_2$$

$$\frac{\Delta \cup \{X\} \vdash \tau \text{ ok}}{\Delta \vdash \exists X. \ \tau \text{ ok}}$$