
Substructural Type Systems
CS 152 (Spring 2020)

Harvard University

Thursday, April 2, 2020

1 / 26

Announcements

I HW2: grading in process...

I HW3: due today (Apr 2)

I HW4: released March 31, due Apr 14
I Midterm grades

I You should have access to your grades on Canvas
I No released answer key; discuss during OH
I Will release distribution soon

I All feedback welcome
I Suggestions for improvement, any difficulties you

are facing, ...
I (Can post anonymously to Piazza, even to

instructors)
I Will send out (optionally anonymous) survey soon

2 / 26

Today, we will learn about

I Substructural type systems
I Natural deduction inference rules
I Structural inference rules
I Linear lambda calculus

I Rust

3 / 26

Natural deduction

I Natural deduction is a kind of proof calculus
that can be used to formalize mathematical
logic
I Meant to be the natural way to reason about truth!

I A1, . . . ,An ` B means whenever formulas A1 to
An are true, then formula B is true

I E.g., p,¬q ` q ⇒ (p ⇒ r)

I Can define inference rules for the logic, e.g.,

Γ ` A ∧ B

Γ ` A

4 / 26

Structural inference rules

I Structural inference rules manipulate the
assumptions (i.e., formulas to the left of `)

I Allow us to treat list of formulas like a set:

5 / 26

Natural deduction inference rules
I Additional inference rules needed, e.g.,

inference rules for propositional logic:

A ` A

Γ,B ` A

Γ ` B ⇒ A

Γ ` B ⇒ A ∆ ` B

Γ,∆ ` A

Γ ` A ∆ ` B

Γ,∆ ` A ∧ B

Γ ` A ∧ B

Γ ` A

Γ ` A ∧ B

Γ ` B

6 / 26

Substructural logics

I If we drop any structural inference rule, we
have a substructural logic

7 / 26

Substructural logics: linear logic
I Keep Exchange but drop Weakening and

Contraction: linear logic
I Every assumption must be used exactly once

Exchange
Γ,A,B ,∆ ` C

Γ,B ,A,∆ ` C

Contraction
Γ,A,A,∆ ` B

Γ,A,∆ ` B

Weakening
Γ,∆ ` B

Γ,A,∆ ` B

8 / 26

Substructural logics: affine logic
I Keep Exchange and Weakening but

Contraction: affine logic
I Every assumption must be used at most once

Exchange
Γ,A,B ,∆ ` C

Γ,B ,A,∆ ` C

Contraction
Γ,A,A,∆ ` B

Γ,A,∆ ` B

Weakening
Γ,∆ ` B

Γ,A,∆ ` B

9 / 26

Curry-Howard Isomorphism

10 / 26

Curry-Howard Isomorphism

I Exchange
Γ, x :τ1, y :τ2,∆ ` e :τ

Γ, y :τ2, x :τ1,∆ ` e :τ

Γ,A,B ,∆ ` C

Γ,B ,A,∆ ` C

I Contraction
Γ, x :τ, x :τ,∆ ` e :τ ′

Γ, x :τ,∆ ` e :τ ′
Γ,A,A,∆ ` B

Γ,A,∆ ` B

I Weakening
Γ,∆ ` e :τ

Γ, x :τ ′,∆ ` e :τ
x 6∈ Γ,∆

Γ,∆ ` B

Γ,A,∆ ` B

11 / 26

Linear type system

I Every variable is used exactly once

I Linear type systems drop Contraction and
Weakening (but keep Exchange)

Exchange
Γ, x :τ1, y :τ2,∆ ` e :τ

Γ, y :τ2, x :τ1,∆ ` e :τ

Contraction
Γ, x :τ, x :τ,∆ ` e :τ ′

Γ, x :τ,∆ ` e :τ ′

Weakening
Γ,∆ ` e :τ

Γ, x :τ ′,∆ ` e :τ
x not in Γ,∆

12 / 26

Affine type system

I Every variable is used at most once

I Affine type systems drop Contraction (but keep
Exchange and Weakening)

Exchange
Γ, x :τ1, y :τ2,∆ ` e :τ

Γ, y :τ2, x :τ1,∆ ` e :τ

Contraction
Γ, x :τ, x :τ,∆ ` e :τ ′

Γ, x :τ,∆ ` e :τ ′

Weakening
Γ,∆ ` e :τ

Γ, x :τ ′,∆ ` e :τ
x not in Γ,∆

13 / 26

Relevant type system

I Every variable is used at least once

I Affine type systems drop Weakening (but keep
Contraction and Exchange)

Exchange
Γ, x :τ1, y :τ2,∆ ` e :τ

Γ, y :τ2, x :τ1,∆ ` e :τ

Contraction
Γ, x :τ, x :τ,∆ ` e :τ ′

Γ, x :τ,∆ ` e :τ ′

Weakening
Γ,∆ ` e :τ

Γ, x :τ ′,∆ ` e :τ
x not in Γ,∆

14 / 26

Ordered type system

I Every variable is used exactly once, in order

I Affine type systems drop Weakening,
Contraction, and Exchange

Exchange
Γ, x :τ1, y :τ2,∆ ` e :τ

Γ, y :τ2, x :τ1,∆ ` e :τ

Contraction
Γ, x :τ, x :τ,∆ ` e :τ ′

Γ, x :τ,∆ ` e :τ ′

Weakening
Γ,∆ ` e :τ

Γ, x :τ ′,∆ ` e :τ
x not in Γ,∆

15 / 26

Linear lambda calculus
I Explore linear type system in lambda calculus
I Type system will track use of objects
I A linear object must be used exactly once (and

implementation could, e.g., deallocate object
after use)

I Will also have unrestricted objects that can be
used many times

16 / 26

Type system

17 / 26

Inference rules

I Maintain two invariants:
1. linear variables are used exactly once on each

control flow path
2. unrestricted data structures may not contain linear

data structures

18 / 26

Utility functions 1/2
I Split context Γ into two pieces

∅ = ∅ ◦ ∅

Γ = Γ1 ◦ Γ2

Γ, x :un π = (Γ1, x :un π) ◦ (Γ2, x :un π)

Γ = Γ1 ◦ Γ2

Γ, x : lin π = (Γ1, x : lin π) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : lin π = Γ1 ◦ (Γ2, x : lin π)

19 / 26

Utility functions 2/2

I Determine whether type or context can be used
in linear setting
I un(τ) if and only if τ = un π.
I lin(τ) if and only if τ = un π or τ = lin π.
I q(Γ) if and only if for all (x :τ) ∈ Γ, we have q(τ).

20 / 26

Inference rules 1/2

un(Γ1, Γ2)

Γ1, x :τ, Γ2 ` x :τ

un(Γ)

Γ ` q b :q bool

Γ1 ` e1 :q bool
Γ2 ` e2 :τ Γ2 ` e3 :τ

Γ ` if e1 then e2 else e3 :τ
Γ = Γ1 ◦ Γ2

Γ1 ` e1 :τ1 Γ2 ` e2 :τ2 q(τ1) q(τ2)

Γ ` q (e1, e2) :q (τ1, τ2)
Γ = Γ1 ◦ Γ2

21 / 26

Inference rules 2/2

Γ1 ` e1 :q (τ1 × τ2) Γ2, x :τ1, y :τ2 ` e2 :τ

Γ ` split e1 as x , y in e2 :τ
Γ = Γ1 ◦ Γ2

q(Γ) Γ, x :τ ` e :τ ′

Γ ` q λx :τ. e :q τ → τ ′

Γ1 ` e1 :q τ → τ ′ Γ2 ` e2 :τ

Γ ` e1 e2 :τ ′
Γ = Γ1 ◦ Γ2

22 / 26

Examples

lin λx : lin bool.

(lin λf :un (un bool→ lin bool). lin true)

(un λy :un bool. x)

lin λx : lin bool.

(lin λf :un (un bool→ lin bool). lin (f (un true), f (un true)))

(un λy :un bool. x)

23 / 26

Operational semantics
I Use store-based semantics (to emphasize

reclaiming memory)

I Type system ensures that a location is never
accessed after it is freed.

p ::= b | λx :τ. e | (`1, `2)

v ::= q p

E ::= [·] | if E then e2 else e3 | q (E , e) | q (`,E)

| splitE as x , y in e | E e | ` E

< e, σ >−→< e ′, σ′ >

< E [e], σ >−→< E [e ′], σ′ >
24 / 26

Val
〈v , σ〉 −→ 〈`, σ[` 7→ v]〉

` 6∈ dom(σ)

If-True

σ(`) = q true σ′ =

{
σ if q = un

σ \ ` if q = lin

〈if ` then e1 else e2, σ〉 −→1, σ
′〉

If-False

σ(`) = q false σ′ =

{
σ if q = un

σ \ ` if q = lin

〈if ` then e1 else e2, σ〉 −→2, σ
′〉

25 / 26

Split

σ(`) = q (`1, `2) σ′ =

{
σ if q = un

σ \ ` if q = lin

〈split ` as x , y in e, σ〉 −→ 〈e{`1/x}{`2/y}, σ′〉

App

σ(`1) = q λx :τ. e σ′ =

{
σ if q = un

σ \ ` if q = lin

〈`1 `2, σ〉 −→ 〈e{`2/x}, σ′〉

26 / 26

