Substructural Type Systems
CS 152 (Spring 2020)

Harvard University

Thursday, April 2, 2020

1/26

Announcements

» HW2: grading in process...
HW3: due today (Apr 2)

»
» HWS4: released March 31, due Apr 14
» Midterm grades

» You should have access to your grades on Canvas
» No released answer key; discuss during OH
» Will release distribution soon

» All feedback welcome

» Suggestions for improvement, any difficulties you
are facing, ...

» (Can post anonymously to Piazza, even to
instructors)

» Will send out (optionally anonymous) survey soon

2/26

Today, we will learn about

» Substructural type systems

» Natural deduction inference rules
» Structural inference rules
» Linear lambda calculus

» Rust

3/26

Natural deduction

» Natural deduction is a kind of proof calculus
that can be used to formalize mathematical
logic

» Meant to be the natural way to reason about truth!

» Ai, ..., A, B means whenever formulas A; to
A, are true, then formula B is true

» Eg,p,qgkqg=(p=r)
» Can define inference rules for the logic, e.g.,

[FAAB
F=A

4/26

Structural inference rules

» Structural inference rules manipulate the
assumptions (i.e., formulas to the left of)

» Allow us to treat list of formulas like a set:

5/26

Natural deduction inference rules

» Additional inference rules needed, e.g.,
inference rules for propositional logic:

B A
Al A [FB= A

[FB=A AFB TFA AFB
[AFA [AFAAB

FAAB FAAB
r=A - B

6/26

Substructural logics

» If we drop any structural inference rule, we
have a substructural logic

7/26

Substructural logics: linear logic

» Keep Exchange but drop Weakening and
Contraction: linear logic

» Every assumption must be used exactly once

A BAFC
IB,AAKFC

EXCHANGE

8/26

Substructural logics: affine logic

» Keep Exchange and Weakening but
Contraction: affine logic

» Every assumption must be used at most once

A BAFC
IB,AAKFC

EXCHANGE

AFB
A AFB

WEAKENING

9/26

Curry-Howard Isomorphism

10/26

Curry-Howard Isomorphism

» Exchange
[x:m,y:mAFe:T A B AFC

My, x:m,AFe:T B,AAFC

» Contraction
Mox:mx:7,AFe:7 A AAFB

M x:1,AFe:7 A AFB
» Weakening
MMAF e: r'AFB
SN ET wgrA

[x:r AFeir AAFB

11/26

Linear type system

» Every variable is used exactly once

» Linear type systems drop Contraction and
Weakening (but keep Exchange)

EXCHANGE [x:m,y:m, Ak e:T

[y, x:m,AFe:T

12/26

Affine type system

» Every variable is used at most once

» Affine type systems drop Contraction (but keep
Exchange and Weakening)

EXCHANGE [x:m,y:m, Ak e:T

[y, x:m,AFe:T

A e:T _
WEAKENING xnotinl A
Mx: 7, At e:r

13/26

Relevant type system

» Every variable is used at least once

» Affine type systems drop Weakening (but keep
Contraction and Exchange)

EXCHANGE [x:m,y:m, Ak e:T

[y, x:m,AFe:T
Mx:m,x:7,AFe:7
M x:7, Ak e:7

CONTRACTION

14/26

Ordered type system

» Every variable is used exactly once, in order

» Affine type systems drop Weakening,
Contraction, and Exchange

15/26

Linear lambda calculus

» Explore linear type system in lambda calculus

» Type system will track use of objects

» A linear object must be used exactly once (and
implementation could, e.g., deallocate object
after use)

» Will also have unrestricted objects that can be
used many times

16 /26

Type system

17/26

Inference rules

» Maintain two invariants:
1. linear variables are used exactly once on each
control flow path
2. unrestricted data structures may not contain linear
data structures

18/26

Utility functions 1/2

» Split context [into two pieces

D=000

F:F10F2

[x:un 7w = (1, x:un 7)o ([x:un)

F:F10F2

Mox:linm = (I, x:linm)ol,

[= F1 o r2 19/26

Utility functions 2/2

» Determine whether type or context can be used
in linear setting
» un(7) if and only if 7 = un 7.
» lin(7) if and only if 7 =un 7 or 7 = lin 7.
» q(T) if and only if for all (x:7) € T, we have g(7).

20/26

Inference rules 1/2

Un(rl,rz) un(r)
[, x:7,[o - x:7 ['+q b:q bool
Fl = €1:q bool

L e: [HF es:
AN N SN S S

[Fif e then e else e3: 7

MEe:n TaFe:mn q(mn) q(m)
[Fq (e, e):q (11, 7)

F:F10F2

21/26

Inference rules 2/2

I_ll—el:q(71><72) r2,X27'1,yZT2|_6217'

- - F:F10F2
[+ spliteiasx,yine:7
q(l) M x:T7Fe:T
Mg M\:1.e:qm— 7
Foe: ! :
MFe:gqm—T r2|_627'r:rlor2

e e:7

22/26

Examples

lin Ax:lin bool.
(lin Af zun (un bool — lin bool). lin true)
(un Ay :un bool. x)

lin Ax:lin bool.
(lin Af:un (un bool — lin bool).lin (f (un true), f (un true)))
(un Ay :un bool. x)

23/26

Operational semantics

» Use store-based semantics (to emphasize
reclaiming memory)

» Type system ensures that a location is never
accessed after it is freed.

p:=b|Ax:T.e| ({1,0r)

vi=gqgp
E:=[]|ifEtheneyelsees|q(E,e)|q (¢ E)
| splitEasx,yine| Ee|lE

<eo>—<ée, 0 >
< Ele],0 >—< E[€],0’ >

24/26

N s e e v Rl O

o if g =un
l)=gqt '
o(£) = q true ’ {a\é if g = lin

IF-TRUE _
(if £ then e else ey, 0) —1,07)

o if g =un
() = q fal =
olf)=qfalse o {J\Z if g = lin

IF-FALSE _
(if £ then e; else ey, 0) —,0)

25/26

o\l if g=lin
(splitlasx,yine, o) — (e{l1/x}{l2/y},o")

o if g = un
o(f) = q (t,6) o = { 9
SPLIT

o if g =un
/1) = g \x:T. I =
o) =g AxiTe ? {a\f if g =lin
(1 o, 0) — (e{la/x},0")

APpPpP

26/26

