Semantics of Concurrency
CS 152 (Spring 2020)

Harvard University

Tuesday, April 28, 2020
Today, we will learn about

▶ A simple concurrent λ-calculus
▶ Weak memory models
▶ Effect system for determinism
A simple concurrent λ-calculus
concurrent operator \(||\)

The expression $e_1||e_2$ will concurrently evaluate e_1 and e_2. If expression e_1 evaluates to v_1 and e_2 evaluates to v_2, the result of evaluating $e_1||e_2$ will be the pair (v_1, v_2).
A simple concurrent λ-calculus (syntax)

\[
e ::= x \mid n \mid \lambda x.\ e \mid e_1\ e_2 \mid e_1\|\ e_2 \mid (e_1, e_2) \mid \#_1\ e \mid \#_2\ e \\
\mid \text{ref}\ e \mid \!e \mid e_1 ::= e_2 \mid \ell \\
v ::= n \mid \lambda x.\ e \mid (v_1, v_2) \mid \ell
\]
A simple concurrent λ-calculus

$E ::= \cdot | E \ e | v \ E | (E, e) | (v, E) | \#1 \ E | \#2 \ E$

$\mid \text{ref} \ E \mid !E \mid E ::= e \mid v ::= E$
A simple concurrent \(\lambda \)-calculus

\[
\begin{align*}
\langle e, \sigma \rangle \rightarrow & \langle e', \sigma' \rangle \\
\langle E[e], \sigma \rangle \rightarrow & \langle E[e'], \sigma' \rangle \\
\langle (\lambda x. e) v, \sigma \rangle \rightarrow & \langle e\{v/x\}, \sigma \rangle \\
\langle \text{ref } v, \sigma \rangle \rightarrow & \langle \ell, \sigma[\ell \mapsto v] \rangle & \ell \notin \text{dom}(\sigma) \\
\langle !\ell, \sigma \rangle \rightarrow & \langle v, \sigma \rangle & \sigma(\ell) = v \\
\langle \ell := v, \sigma \rangle \rightarrow & \langle v, \sigma[\ell \mapsto v] \rangle
\end{align*}
\]
A simple concurrent λ-calculus

\[
\begin{align*}
< \#1 \ (v_1, v_2), \sigma > & \rightarrow < \v_1, \sigma > \\
< \#2 \ (v_1, v_2), \sigma > & \rightarrow < \v_2, \sigma > \\
< e_1, \sigma > & \rightarrow < e'_1, \sigma' > \\
< e_1 |\!\!\!e_2, \sigma > & \rightarrow < e'_1 |\!\!\!e_2, \sigma' > \\
< e_2, \sigma > & \rightarrow < e'_2, \sigma' > \\
< e_1 |\!\!\!e_2, \sigma > & \rightarrow < e_1 |\!\!\!e'_2, \sigma' > \\
< v_1 |\!\!\!v_2, \sigma > & \rightarrow < (v_1, v_2), \sigma >
\end{align*}
\]
Example: concurrent deposits

\[
\text{let bal} = \text{ref 0 in}\\
\text{(let } y = (\text{bal} := !\text{bal} + 25 || \text{bal} := !\text{bal} + 50) \text{ in}\\
\hspace{1cm} !\text{bal})
\]
Sequential consistency

the result of any execution is as if the memory operations of all the threads were executed in some global sequential order, and the memory operations of each individual thread appear in this sequence in the same order they appear in the thread.
Hardware optimization

- write buffers with bypassing capabilities
- each core has its own write buffer
- when it issues a write, the write goes into the buffer and the program can continue
- when the core wants to read a (different) memory location, it can “bypass” the write buffer, i.e. it can go immediately to memory to read the memory location, even if all of the writes it issued have not yet finished
- common hardware optimization used in uniprocessors, since it helps hide the latency of write operations
- but with multiple cores, this can violate sequential consistency
Hardware optimization (Example)

- Two memory locations a and b both containing zero.
- First core executes
 \[a := 1; \text{if } !b = 0 \text{ then } e \text{ else } () \]
- Second core executes
 \[b := 1; \text{if } !a = 0 \text{ then } e \text{ else } () \]
- Under sequential consistency, at most one of these cores will execute expression e.
- With write buffers, both cores may read 0 and both cores execute expression e!
Effect system for determinism
Memory region
Syntax Changes

\[
e ::= \cdots \mid \text{ref}_\alpha e \mid \ell_\alpha
\]

\[
v ::= \cdots \mid \ell_\alpha
\]
Computational effect
New Judgement

We write $\Gamma, \Sigma \vdash e : \tau \triangleright R, W$ to mean that under variable context Γ and store typing Σ, expression e has type τ, and that during evaluation of e, any location read will belong to a region in set R (the read effects of e), and any locations written will belong to a region in set W (the write effects of e).
Extended Function Type

We extend function types with read and write effects. A function type is now of the form $\tau_1 \xrightarrow{R,W} \tau_2$. A function of this type takes as an argument a value of type τ_1, and produces a value of type τ_2; R and W describe, respectively, the read and write effects that may occur during execution of the function.

$$\tau ::= \text{int} \mid \tau_1 \xrightarrow{R,W} \tau_2 \mid \tau_1 \times \tau_2 \mid \tau \text{ ref}_\alpha$$
Static Rules

\[
\begin{align*}
\Gamma, \Sigma \vdash n : \textbf{int} &\triangleright \emptyset, \emptyset \\
\Gamma(x) & = \tau \\
\Gamma, \Sigma \vdash x : \tau &\triangleright \emptyset, \emptyset \\
\Gamma[x \mapsto \tau], \Sigma \vdash e : \tau' &\triangleright R, W \\
\Gamma, \Sigma \vdash \lambda x : \tau. e : \tau &\xrightarrow{R, W} \tau' \triangleright \emptyset, \emptyset \\
\Gamma, \Sigma \vdash e_1 : \tau &\xrightarrow{R, W} \tau' \triangleright R_1, W_2 \\
\Gamma, \Sigma \vdash e_2 : \tau &\triangleright R_2, W_2 \\
\Gamma, \Sigma \vdash e_1 \ e_2 : \tau' &\triangleright R_1 \cup R_2 \cup R, W_1 \cup W_2 \cup W \\
\Gamma, \Sigma \vdash e : \tau &\triangleright R, W \\
\Gamma, \Sigma \vdash \text{ref}_\alpha e : \tau &\textbf{ref}_\alpha \triangleright R, W
\end{align*}
\]
Static Rules

\[
\begin{align*}
\Gamma, \Sigma \vdash e : \tau \quad & \text{ref}_\alpha \triangleright R, W \\
\Gamma, \Sigma \vdash !e : \tau \triangleright R \cup \{\alpha\}, W \\
\Gamma, \Sigma \vdash e_1 : \tau \quad & \text{ref}_\alpha \triangleright R_1, W_2 \\
\Gamma, \Sigma \vdash e_2 : \tau \triangleright R_2, W_2 \\
\Gamma, \Sigma \vdash e_1 := e_2 : \tau \triangleright R_1 \cup R_2, W_1 \cup W_2 \cup \{\alpha\}
\end{align*}
\]

\[
\begin{align*}
\Gamma, \Sigma \vdash \ell_\alpha : \tau \quad & \text{ref}_\alpha \triangleright \emptyset, \emptyset \\
\Sigma(\ell_\alpha) &= \tau \quad & \text{ref}_\alpha \\
\Gamma, \Sigma \vdash e_1 : \tau_1 \triangleright R_1, W_1 \\
\Gamma, \Sigma \vdash e_2 : \tau_2 \triangleright R_2, W_2 \\
\Gamma, \Sigma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \triangleright R_1 \cup R_2, W_1 \cup W_2
\end{align*}
\]
$\Gamma, \Sigma \vdash e : \tau_1 \times \tau_2 \triangleright R, W$

$\Gamma, \Sigma \vdash \#1 e : \tau_1 \triangleright R, W$

$\Gamma, \Sigma \vdash e : \tau_1 \times \tau_2 \triangleright R, W$

$\Gamma, \Sigma \vdash \#2 e : \tau_2 \triangleright R, W$
Static Rules

\[\Gamma, \Sigma \vdash e_1 : \tau_1 \triangleright R_1, W_1 \quad W_1 \cap (R_2 \cup W_2) = \emptyset \]
\[\Gamma, \Sigma \vdash e_2 : \tau_2 \triangleright R_2, W_2 \quad W_2 \cap (R_1 \cup W_1) = \emptyset \]
\[\Gamma, \Sigma \vdash e_1 \parallel e_2 : \tau_1 \times \tau_2 \triangleright R_1 \cup R_2, W_1 \cup W_2 \]
Static Rules

The rule for dereferencing a location adds the appropriate region to the read effect. The rule for updating locations adds the appropriate region to the write effect. The other rules just propagate read and write effects as needed.

The rule for the concurrent operator is the most interesting. A concurrent command $e_1 || e_2$ is well-typed only if the write effect of e_1 does not intersect with the read or write effects of e_2, and vice versa. That is, there is no region such that e_1 writes to that region, and e_2 reads or writes to the same region. This prevents data races, i.e., two threads that are concurrently accessing the same location, and one of those accesses is a write.
Type soundness?

Intuitively, it extends our previous notion of type safety (i.e., not getting stuck), with the notion that R and W correctly characterize the reads and writes that a program may perform. We express this idea with the following theorem. (Note that we assume that evaluation contexts include $E || e$ and $e || E$.)
Type Soundness

If ⊢ e : τ △ R, W then for all stores σ and σ' :

- if, for some evaluation context E, we have
 \[\langle e, \sigma \rangle \rightarrow^* \langle E[l_\alpha], \sigma' \rangle, \text{ then } \alpha \in R. \]

- if, for some evaluation context E, we have
 \[\langle e, \sigma \rangle \rightarrow^* \langle E[l_\alpha := v], \sigma' \rangle, \text{ then } \alpha \in W. \]

- if \[\langle e, \sigma \rangle \rightarrow^* \langle e', \sigma \rangle \] then either \(e' \) is a value or there exists \(e'' \) and \(\sigma'' \) such that
 \[\langle e', \sigma' \rangle \rightarrow \langle e'', \sigma'' \rangle. \]
Type soundness

The theorem says that if expression e is well typed, and, during its evaluation, it dereferences a location belonging to region α, then the type judgment had α in the read effect of e. It also says that if evaluation updates a location ℓ_α, then α is in the write effect of e. (We could also have tracked the allocation effect of e, i.e., in which region e allocates new locations, but we don’t need to for our purposes.)
The theorem says that a well-typed program is deterministic. If there are two executions, then both executions produce the same value.
Determinism

If \(\Gamma, \Sigma \vdash e : \tau \triangleright R, W \) and \(< e, \sigma > \xrightarrow{*} < v_1, \sigma_1 >\) and \(e \xrightarrow{*} < v_2, \sigma_2 >\) then \(v_1 = v_2 \).
Proof of Determinism

The proof of this theorem relies on the following key lemma, which says that if a well-typed concurrent expression $e_1 \parallel e_2$ can first take a step with e_2, and then take a step with e_1, then we can first step e_1 and then e_2, and end up at the same state.
Proof of Determinism (Key Lemma)

If for some Σ, τ, R and W we have $\emptyset, \Sigma \vdash e_1 || e_2 : \tau \triangleright R, W$, then for all σ such that $\Gamma, \Sigma \vdash \sigma$ if

\[
< e_1 || e_2, \sigma > \rightarrow < e_1 || e'_2, \sigma' > \rightarrow < e'_1 || e'_2, \sigma'' > ,
\]

then there exists σ''' such that

\[
< e_1 || e_2, \sigma > \rightarrow < e'_1 || e_2, \sigma''' > \rightarrow < e'_1 || e'_2, \sigma'' > .
\]
Proof of Determinism (Key Lemma)

Intuitively, the proof works by showing that given any two executions of a program, they are both equivalent to a third execution in which we always fully evaluate the left side of a concurrent operator first, before starting to evaluate the right side of a concurrent operator. By transitivity, the two executions must be equal, and produce equal values.