
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

Apr 13–17, 2020

1 Environment Semantics

For Homework 5, the monadic interpreter you will be using uses environment semantics, that is, the oper-
ational semantics of the language uses a map from variables to values instead of performing substitution.
This is a quick primer on environment semantics.

An environment ρmaps variables to values. We define a large-step operational semantics for the lambda
calculus using an environment semantics. A configuration is a pair 〈e, ρ〉 where expression e is the expres-
sion to compute and ρ is an environment. Intuitively, we will always ensure that any free variables in e are
mapped to values by environment ρ.

The evaluation of functions deserves special mention. Configuration 〈λx. e, ρ〉 is a function λx. e, defined
in environment ρ, and evaluates to the closure (λx. e, ρ). A closure consists of code along with values for all
free variables that appear in the code.

The syntax for the language is given below. Note that closures are included as possible values and ex-
pressions, and that a function λx. e is not a value (since we use closures to represent the result of evaluating
a function definition).

e ::= x | n | e1 + e2 | λx. e | e1 e2 | (λx. e, ρ)

v ::= n | (λx. e, ρ)

Note than when we apply a function, we evaluate the function body using the environment from the
closure (i.e., the lexical environment, ρlex), as opposed to the environment in use at the function application
(the dynamic environment).

〈x, ρ〉 ⇓ ρ(x) 〈n, ρ〉 ⇓ n
〈e1, ρ〉 ⇓ n1 〈e2, ρ〉 ⇓ n2

〈e1 + e2, ρ〉 ⇓ n
n = n1 + n2

〈λx. e, ρ〉 ⇓ (λx. e, ρ)

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρlex[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

For convenience, we define a rule for let expressions.

〈e1, ρ〉 ⇓ v1 〈e2, ρ[x 7→ v1]〉 ⇓ v2
〈let x = e1 in e2, ρ〉 ⇓ v2

(a) Evaluate the program let f = (let a = 5 in λx. a+ x) in f 6. Note the closure that f is bound to.

Answer: Here is a derivation of the program.

〈5, ∅〉 ⇓ 5 〈λx. a+ x, [a 7→ 5]〉 ⇓ (λx. a+ x, [a 7→ 5])

〈let a = 5 in λx. a+ x), ∅〉 ⇓ (λx. a+ x, [a 7→ 5])

...

〈f 6, [f 7→ (λx. a+ x, [a 7→ 5])]〉 ⇓ 11

〈let f = (let a = 5 in λx. a+ x) in f 6, ∅〉 ⇓ 11



Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

where the missing derivation is as follows (and where ρ0 = [f 7→ (λx. a+ x, [a 7→ 5])] and ρ1 = [a 7→ 5, x 7→
6])

〈f, ρ0〉 ⇓ (λx. a+ x, [a 7→ 5]) 〈6, ρ0〉 ⇓ 6

〈a, ρ1〉 ⇓ 5 〈x, ρ1〉 ⇓ 6

〈a+ x, ρ1〉 ⇓ 11

〈f 6, ρ0〉 ⇓ 11

Note that f is bound to the closure (λx. a+x, [a 7→ 5]). That is. the function λx. a+x has a lexical environment
[a 7→ 5]: when the function was defined, the variable a was bound to 5. Note that when the function is used
(f 6), the environment does not bind a at all.

(b) Suppose we replaced the rule for application with the following rule:

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρ[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

That is, we use the dynamic environment to evaluate the function body instead of the lexical environ-
ment.

What would happen if you evaluated the program let f = (let a = 5 in λx. a + x) in f 6 with this
modified semantics?

Answer: As noted in the answer to the previous question, f is bound to the closure (λx. a+ x, [a 7→ 5]), i.e.,
the lexical environment for the function λx. a+x is [a 7→ 5]: when the function was defined, the variable a was
bound to 5. When the function is used (f 6), the dynamic environment does not bind a at all. So that means
that evaluation of λx. a+x will get stuck. In particular, it will try to evaluate expression a+x in environment
[f 7→ (λx. a + x, [a 7→ 5]), x 7→ 6] (that is, the dynamic environment at the call site extended with x mapped
to 6), and so won’t be able to evaluate the variable a.

2 Axiomatic semantics

(a) Consider the program

c ≡ bar := foo; while foo > 0 do (bar := bar + 1; foo := foo− 1).

Write a Hoare triple {P} c {Q} that expresses that the final value of bar is two times the initial value
of foo.

Answer:

{v = foo} bar := foo; while foo > 0 do (bar := bar + 1; foo := foo− 1) {bar = 2× v}

Note that v is a logical variable, and we are using it to provide a name for the initial value of foo. Note also
that the Hoare triple could have said more things about the program. For example, the post condition could have
included that foo is equal to zero.

(b) Prove the following Hoare triples. That is, using the inference rules from Section 1.3 of Lecture 19,
find proof trees with the appropriate conclusions.

Page 2 of 6



Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

(i) ` {baz = 25} baz := baz + 17 {baz = 42}

Answer:

CONS
� baz = 25⇒ baz+ 17 = 42

ASG.
` {baz+ 17 = 42} baz := baz+ 17 {baz = 42}

` {baz = 25} baz := baz+ 17 {baz = 42}

(ii) ` {true} baz := 22; quux := 20 {baz + quux = 42}

Answer:

CONSQ.
� true⇒ 22 + 20 = 42

SEQ.

ASG.
{22 + 20 = 42} baz := 22 {baz + 20 = 42}

ASG.
{baz + 20 = 42} quux := 20 {baz + quux = 42}

{22 + 17 = 42} baz := 22; quux := 20 {baz + quux = 42}
{true} baz := 22; quux := 20 {baz + quux = 42}

(iii) ` {baz + quux = 42} baz := baz− 5; quux := quux + 5 {baz + quux = 42}

Answer: Let c ≡ baz := baz− 5; quux := quux + 5.

CONSQ.
� baz + quux = 42⇒ baz− 5 + quux + 5 = 42

...

` {baz− 5 + quux + 5 = 42} c {baz + quux = 42}
` {baz + quux = 42} c {baz + quux = 42}

where the elided tree is

SEQ

ASG
{baz− 5 + quux + 5 = 42} baz := baz− 5 {baz + quux− 5 = 42}

ASG
{baz + quux− 5 = 42} quux := quux + 5 {baz + quux = 42}

` {baz− 5 + quux + 5 = 42} c {baz + quux = 42}

(iv) ` {true} if y = 0 then z := 2 else z := y × y {z > 0}

Answer: Let’s start the derivation using the rule for conditionals:

IF

CONS

...

` {true ∧ y = 0} z := 2 {z > 0}
CONS

...

` {true ∧ ¬(y = 0)} z := y × y {z > 0}
` {true} if y = 0 then z := 2 else z := y × y {z > 0}

Let’s consider each of the proof subtrees in turn.

CONS
� true ∧ y = 0⇒ 2 > 0

ASG
{2 > 0} z := 2 {z > 0} � z > 0⇒ z > 0

` {true ∧ y = 0} z := y × y {z > 0}

Where here the assertion true ∧ y = 0⇒ 2 > 0 is always valid because � 2 > 0.

CONS
� true ∧ ¬(y = 0)⇒ y × y > 0

ASG
{y × y > 0} z := y × y {z > 0} � z > 0⇒ z > 0

` {true ∧ ¬(y = 0)} z := y × y {z > 0}

Page 3 of 6



Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

The assertion true∧¬(y = 0)⇒ y× y > 0 is valid because either � y× y > 0 or 6� true∧¬(y = 0). To
see this we can simplify 6� true ∧ ¬(y = 0) to 6� ¬(y = 0), and then to � y = 0. And it is always the case
that either � y = 0 or � y × y > 0.

(v) ` {true} y := 10; z := 0; while y > 0 do z := z + y {z = 55}

Answer: This is a “trick” question in that the loop never terminates. (This wasn’t intentional; Prof
Chong made a mistake when writing the question. But luckily the Hoare triple is still valid!)
Let’s consider the while loop. So the loop invariant we will use is y > 0.

WHILE

...

` {y > 0 ∧ y > 0} z := z+ y {y > 0}
` {y > 0} while y > 0 do z := z+ y {y > 0 ∧ y ≤ 0}

Note that the post condition is y > 0 ∧ y ≤ 0. This is equivalent to false! And false implies anything.
In particular, we have that � y > 0 ∧ y ≤ 0 =⇒ z = 55.

(vi) ` {true} y := 10; z := 0; while y > 0 do (z := z + y; y := y − 1) {z = 55}

Answer: This is what the previous question was actually meant to be.... The loop invariant we will use
is that y ≥ 0 ∧ z = 10 + 9 + · · ·+ (y + 1) which we can write as y ≥ 0 ∧ z =

∑10
i=y+1 i.

Let’s first of all prove that the loop invariant is established when the program enters the loop (we leave part
of the proof tree elided, as an exercise for the reader):

CONS.
� true =⇒ 10 = 10 ∧ 0 = 0

...

` {10 = 10 ∧ 0 = 0} y := 10; z := 0; {y = 10 ∧ z = 0} � (y = 10 ∧ z = 0) =⇒ y ≥ 0 ∧ z =
∑10

i=y+1 i

` {true} y := 10; z := 0; {y ≥ 0 ∧ z =
∑10

i=y+1 i}

Now let’s show that it is in fact a loop invariant. For brevity let S ≡
∑10

i=y+1 i and S′ ≡
∑10

i=y−1+1 i.

WHILE

� y ≥ 0 ∧ z = S ∧ y > 0 =⇒ y − 1 ≥ 0 ∧ z + y = S′

...

1

D � y ≥ 0 ∧ z = S =⇒ y ≥ 0 ∧ z = S

` {y ≥ 0 ∧ z = S ∧ y > 0} z := z + y; y := y − 1 {y ≥ 0 ∧ z = S}
` {y ≥ 0 ∧ z = S} while y > 0 do (z := z + y; y := y − 1) {y ≥ 0 ∧ z = S ∧ y ≤ 0}

where
...
1

D is the following derivation (where S ≡
∑10

i=y+1 i and S′ ≡
∑10

i=y−1+1 i):

SEQ

ASG
` {y − 1 ≥ 0 ∧ z + y = S′} z := z + y {y − 1 ≥ 0 ∧ z = S′}

ASG.
` {y − 1 ≥ 0 ∧ z = S′} y := y − 1 {y ≥ 0 ∧ z = S}

` {y − 1 ≥ 0 ∧ z + y = S′} z := z + y; y := y − 1 {y ≥ 0 ∧ z = S}

Finally, we can use the fact that � y ≥ 0 ∧ z = S ∧ y ≤ 0 =⇒ z = 55 to construct a proof of the desired
triple (where c ≡ y := 10; z := 0; while y > 0 do (z := z + y; y := y − 1)):

CONS
� true =⇒ true

SEQ

...

` {true} c {y ≥ 0 ∧ z = S ∧ y ≤ 0} � y ≥ 0 ∧ z = S ∧ y ≤ 0 =⇒ z = 55

` {true} c {z = 55}

Page 4 of 6



Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

3 Dependent Types

(a) Assume that boolvec has kind (x :nat)⇒ Type and init has type (n : nat)→ bool→ boolvec n).

Show that the expression init 5 true has type boolvec 5,

That is, prove
Γ ` init 5 true :boolvec 5

where
Γ = boolvec :: (x :nat)⇒ Type, init : (n : nat)→ bool→ boolvec n.

Answer:

Γ ` init : (n : nat)→ bool→ boolvec n Γ ` 5:nat

Γ ` init 5:bool→ boolvec 5 Γ ` true :bool

Γ ` init 5 true :boolvec 5

(b) Show that the types boolvec (35 + 7) and boolvec ((λy :nat. y) 42) are equivalent.

That is, prove that

Γ ` boolvec (35 + 7) ≡ boolvec ((λy :nat. y) 42) ::Type

where
Γ = boolvec :: (x :nat)⇒ Type.

Answer: Let T1 be defined as

Γ ` boolvec ≡ boolvec :: (x :nat)⇒ Type Γ ` 35 + 7 ≡ 42::nat

Γ ` boolvec (35 + 7) ≡ boolvec 42::Type

and let T2 be defined as

Γ ` boolvec ≡ boolvec :: (x :nat)⇒ Type

Γ, y :nat ` y :nat Γ ` 42:nat

Γ ` (λy :nat. y) 42 ≡ 42::nat

Γ ` 42 ≡ (λy :nat. y) 42::nat

Γ ` boolvec 42 ≡ boolvec ((λy :nat. y) 42) ::Type

in
T1

Γ ` boolvec (35 + 7) ≡ boolvec 42::Type

T2

Γ ` boolvec 42 ≡ boolvec ((λy :nat. y) 42) ::Type

Γ ` boolvec (35 + 7) ≡ boolvec ((λy :nat. y) 42) ::Type

where here T1 is similar to T2 and left as an exercise to the reader.

(c) Suppose we had a function double that takes a boolvec and returns a boolvec that is twice the length.
Write an appropriate type for double. (Note that you will need make sure that the type of the boolvec
argument is well formed! Hint: take a look at the type of join, mentioned in the Lecture 20 notes, for
inspiration.)

Page 5 of 6



Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

Answer:
(n :nat)→ boolvec n→ boolvec (n+ n)

Note that we need to take a natural number n as an argument, in order for us to specify the type of the second
argument (i.e., a boolean vector of length n, boolvec n).

If we wrote boolvec n→ boolvec (n+n), then n is free and the type isn’t well formed. Note that boolvec→
boolvec is not well-kinded.

Page 6 of 6


	Environment Semantics
	Axiomatic semantics
	Dependent Types

