1 Logic Programming

To try playing around with Prolog, go to http://www.swi-prolog.org/ You will be able to use Prolog online at https://swish.swi-prolog.org/.

To try playing around with Datalog, you can go to either http://abcdatalog.seas.harvard.edu/ to download a Java-based Datalog implementation, or you can go to https://datalog.db.in.tum.de/ to use Datalog online.

Although you can use the tools above to get the answers to the section problems below very easily, work out the answers by hand (to make sure you understand the semantics of Prolog and Datalog), and then you can check your answers by using the tools to execute the programs.

(a) Consider the following Prolog program (where [] is a constant representing the empty list, [t] is shorthand for cons(t, [])) and [t1, t2|t3] is shorthand for cons(t1, cons(t2, t3)).

\[
\text{foo}([], []). \\
\text{foo}([X], [X]). \\
\text{foo}([X, Y|S], [Y, X|T]) :- \text{foo}(S, T).
\]

For each of the following queries, compute the substitutions that Prolog will generate, if any. (Note that there is a difference between an empty substitution, and no substitution.) If the query evaluation will not terminate, explain why.

- \text{foo}([a, b], X).
- \text{foo}([a, b, c], X).
- \text{foo}([a, b], [a, b])
- \text{foo}(X, [a])
- \text{foo}(X, Y).

Answer: Intuitively, \text{foo}(S, T) holds for two lists S and T if they are the same length, and for all i, the 2ith and 2i + 1th elements of S are equal, respectively, to the 2i + 1th and 2ith elements of T.

- \text{foo}([a, b], X).
 \[
 X = [b, a]
 \]
- \text{foo}([a, b, c], X).
 \[
 X = [b, a, c]
 \]
- \text{foo}([a, b], [a, b])

 No substitutions returned
- \text{foo}(X, [a])
 \[
 X = [a]
 \]
Section and Practice Problems

Logic Programming; Dynamic Types; Probabilistic Programming

(b) Consider the following Datalog program.

\[
\begin{align*}
\text{horn clauses with the known facts to derive new facts, and repeat until we reach a fixed point.} \\
\text{We start by the set of facts that are known,} \\
\text{and} \\
\text{doesn't derive any new facts) we have a fixed point.} \\
\end{align*}
\]

The evaluation of the query never terminates.

(b) Consider the following Datalog program.

\[
\begin{align*}
\text{bar}(a, b, c). \\
\text{bar}(X, Y, Z) \leftarrow \text{bar}(Y, X, Z). \\
\text{bar}(X, Y, Z) \leftarrow \text{bar}(Z, Y, X), \text{quux}(X, Z). \\
\text{quux}(b, c). \\
\text{quux}(c, d). \\
\text{quux}(X, Y) \leftarrow \text{quux}(Y, X). \\
\text{quux}(X, Z) \leftarrow \text{quux}(X, Y), \text{quux}(Y, Z).
\end{align*}
\]

Find all solutions to the query \text{bar}(X, Y, Z).

Answer: We start by the set of facts that are known, \(S_0\), and then given \(S_i\) we produce \(S_{i+1}\) by unifying the horn clauses with the known facts to derive new facts, and repeat until we reach a fixed point.

\[
\begin{align*}
S_0 &= \{ \text{bar}(a, b, c), \text{quux}(b, c), \text{quux}(c, d) \} \\
S_1 &= \{ \text{bar}(a, b, c), \text{quux}(b, c), \text{quux}(c, d), \text{bar}(b, a, c), \text{quux}(c, b), \text{quux}(d, c), \text{quux}(b, d) \} \\
S_2 &= \{ \text{bar}(a, b, c), \text{quux}(b, c), \text{quux}(c, d), \text{bar}(b, a, c), \text{quux}(c, b), \text{quux}(d, c), \text{quux}(b, d), \text{bar}(c, a, b), \text{quux}(d, b), \text{quux}(b, d) \} \\
S_3 &= \{ \text{bar}(a, b, c), \text{quux}(b, c), \text{quux}(c, d), \text{bar}(b, a, c), \text{quux}(c, b), \text{quux}(d, c), \text{quux}(b, d), \text{bar}(c, a, b), \text{quux}(d, b), \text{quux}(b, d) \} \\
S_4 &= \{ \text{bar}(a, b, c), \text{quux}(b, c), \text{quux}(c, d), \text{bar}(b, a, c), \text{quux}(c, b), \text{quux}(d, c), \text{quux}(b, d), \text{bar}(c, a, b), \text{quux}(d, b), \text{quux}(b, d) \} \\
\end{align*}
\]

Since \(S_3\) and \(S_4\) are the same (i.e., applying the rules to \(S_3\) doesn't derive any new facts) we have a fixed point. So all solutions to the query \text{bar}(X, Y, Z)? are:

\[
\begin{align*}
\text{bar}(a, b, c). \\
\text{bar}(b, a, c). \\
\text{bar}(c, a, b). \\
\text{bar}(a, c, b). \\
\end{align*}
\]

(c) Suppose that we represent a directed graph using the predicates edge\((X, Y)\) to indicate that there is
an edge from node \(X \) to node \(Y \). For example, the following graph is represented by the following facts:

\[
\begin{array}{c}
 a & \rightarrow & b & \rightarrow & c \\
 \downarrow & & \downarrow & & \\
 d & & & & \\
\end{array}
\]

node(a).
node(b).
node(c).
node(d).
edge(a, b).
edge(b, c).
edge(c, d).
edge(d, b).

(i) Write a Datalog program that computes \(\text{reachable}(X, Y) \), where \(\text{reachable}(X, Y) \) holds if there is a path (of zero or more edges) from \(X \) to \(Y \).

Answer:

\[
\begin{align*}
\text{reachable}(X, X) & : - \text{node}(X). \\
\text{reachable}(X, Y) & : - \text{edge}(X, Z), \text{reachable}(Z, Y).
\end{align*}
\]

Note that we can’t just use the clause \(\text{reachable}(X, X) \), as that would not bind variable \(X \) in the body of clause, which violates the requirements of Datalog. That is, \(X \) is reachable from itself only if \(X \) is a node.

(ii) Write a Datalog program that computes \(\text{sameSCC}(X, Y) \), where \(\text{sameSCC}(X, Y) \) holds if nodes \(X \) and node \(Y \) are in the same strongly connected component. (Hint: use the predicate \(\text{reachable} \).)

Answer: Two nodes \(a \) and \(b \) are in the same strongly connected component if and only if there is a path from \(a \) to \(b \), and a path from \(b \) to \(a \).

\[
\text{sameSCC}(X, Y) : - \text{reachable}(X, Y), \text{reachable}(Y, X).
\]

For our example graph above, node \(a \) is in its own strongly connected component, but nodes \(b, c, \) and \(d \) are in the same SCC. So the result of the query \(\text{sameSCC}(X, Y) \)? is the following:

\[
\begin{align*}
\text{sameSCC}(a, a) \\
\text{sameSCC}(b, b) \\
\text{sameSCC}(b, c) \\
\text{sameSCC}(b, d) \\
\text{sameSCC}(c, b) \\
\text{sameSCC}(c, c) \\
\text{sameSCC}(c, d) \\
\text{sameSCC}(d, b) \\
\text{sameSCC}(d, c) \\
\text{sameSCC}(d, d)
\end{align*}
\]
2 Dynamic types and contracts

(a) To make sure you understand the operational semantics of dynamic types and exceptions, show the execution of the following program under the semantics of Section 1 of the Lecture 25 notes.

\[
\begin{align*}
\text{let } f &= \lambda x. 42 + x \text{ in} \\
\text{let } g &= \lambda y. (y \text{ true}) + 42 \text{ in} \\
\end{align*}
\]

Answer:

\[
\begin{align*}
\text{let } f &= \lambda x. 42 + x \text{ in let } g &= \lambda y. (y \text{ true}) + 42 \text{ in } g \ f \\
\rightarrow & \text{ let } g = \lambda y. (y \text{ true}) + 42 \text{ in } g \ (\lambda x. 42 + x) \\
& \rightarrow (\lambda y. (y \text{ true}) + 42) \ (\lambda x. 42 + x) \\
& \rightarrow ((\lambda x. 42 + x) \text{ true}) + 42 \\
& \rightarrow (42 + \text{ true}) + 42 \\
& \rightarrow \text{ Err} + 42 \\
& \rightarrow \text{ Err}
\end{align*}
\]

(b) Modify the program from question (a) by adding appropriate error handlers (i.e., expressions of the form \text{try } e_1 \text{ catch } x. e_2 \text{ to catch the type error and return the integer 42 as the final result of the program. There are multiple places in the program where you can insert an error handler to achieve the desired result. Show three variations and their executions. (Note that the semantics for the execution of your programs is from Part 2 (Exception handling) of the Lecture 22 notes.) }

Answer: Here is a version where we add an error handler in the body of function \(f \).

\[
\begin{align*}
\text{let } f &= \lambda x. \ (\text{try} \ (42 + x) \ \text{ catch } z. \ 0) \ \text{ in} \\
\text{let } g &= \lambda y. (y \text{ true}) + 42 \ \text{ in} \\
\end{align*}
\]

Answer: Here is another version, where we add an error handler in the body of function \(g \).

\[
\begin{align*}
\text{let } f &= \lambda x. 42 + x \ \text{ in} \\
\text{let } g &= \lambda y. (\text{try} \ (y \text{ true}) \ \text{ catch } z. \ 0) + 42 \ \text{ in} \\
\end{align*}
\]
let $f = \lambda x. 42 + x$ in let $g = \lambda y. (\text{try } (y \text{ true}) \text{ catch } z. 0) + 42 \text{ in } g f$

\rightarrow let $g = \lambda y. (\text{try } (y \text{ true}) \text{ catch } z. 0) + 42 \text{ in } g (\lambda x. 42 + x)$

$\rightarrow (\lambda y. (\text{try } (y \text{ true}) \text{ catch } z. 0) + 42) (\lambda x. 42 + x)$

$\rightarrow (\text{try } (\lambda x. 42 + x) \text{ true}) \text{ catch } z. 0) + 42$

$\rightarrow (\text{try } (42 + \text{ true}) \text{ catch } z. 0) + 42$

$\rightarrow (\text{try } (\text{ Err } 1) \text{ catch } z. 0) + 42$

$\rightarrow 0 + 42$

$\rightarrow 42$

Finally, here is a version where we put the error handling code at the top level.

let $f = \lambda x. 42 + x$ in

let $g = \lambda y. (y \text{ true}) + 42 \text{ in } try g f$ catch $z. 42$

$\rightarrow let g = \lambda y. (y \text{ true}) + 42 \text{ in } try g (\lambda x. 42 + x) \text{ catch } z. 42$

$\rightarrow try (\lambda y. (y \text{ true}) + 42) (\lambda x. 42 + x) \text{ catch } z. 42$

$\rightarrow try (((\lambda x. 42 + x) \text{ true}) + 42) \text{ catch } z. 42$

$\rightarrow try ((42 + \text{ true}) + 42) \text{ catch } z. 42$

$\rightarrow try (\text{ Err } 1) \text{ catch } z. 42$

$\rightarrow 42$

(c) Modify the program from question (a) by adding appropriate dynamic type checks to raise the error as early as possible. When does your program detect the error?

Answer: This version of the code adds dynamic type checks on all arguments and on results of function applications.

let $f = \lambda x. \text{ if } (\text{is_int? x}) \text{ then } 42 + x \text{ else raise } 3 \text{ in}$

let $g = \lambda y. \text{ if } (\text{is_fun? y}) \text{ then}$

let $y' = (y \text{ true}) \text{ in } \text{ if } (\text{is_int? y'}) \text{ then } y' + 42 \text{ else raise } 3$

else

raise 3 \text{ in}

let $a = g f \text{ in } \text{ if } (\text{is_int? a}) \text{ then } a \text{ else raise } 3$

The execution detects the error as soon as function f is invoked, i.e., is_int? x evaluates to false when x is replaced with true.

(d) Modify the program from question (a) by adding contracts that specify the types of the input and output of f and g. Show the execution of the modified program.
Answer:

\[
\text{let } f = \text{monitor}(\lambda x. 42 + x, \text{is_int? } \rightarrow \text{is_int? }) \text{ in }
\]

\[
\text{let } g = \text{monitor}(\lambda y. (y \text{ true}) + 42, (\text{is_bool? } \rightarrow \text{is_int? }) \rightarrow \text{is_int? }) \text{ in }
\]

\[g \ f\]

3 Probabilistic Programming

(a) Consider the following Bayesian Network for enrollment in intro level CS courses:

<table>
<thead>
<tr>
<th></th>
<th>⊤</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS50</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CS51</th>
<th>!CS51</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊤</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>⊥</td>
<td>0.05</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CS51</th>
<th>CS61</th>
<th>!CS61</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊤</td>
<td>⊤</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>0.95</td>
<td>0.05</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>0.01</td>
<td>0.99</td>
</tr>
</tbody>
</table>

What is the probability that someone takes CS51 given that they took CS50?

Answer: This follows from the definition of the network. \(P(\text{CS51} | \text{CS50}) = 0.6. \)

(b) What is the probability that someone takes CS51 given that they took CS50?

Answer: This is a conditional probability.

\[
P(\text{CS61} | \text{CS50}) = \sum_{\text{CS51}=S} P(\text{CS61} | S, \text{CS50})P(S | \text{CS50})
\]

\[
= P(\text{CS61} | \text{CS51}, \text{CS50})P(\text{CS51} | \text{CS50}) + P(\text{CS61} | !\text{CS51}, \text{CS50})P(!\text{CS51} | \text{CS50})
\]

\[
= (0.5)(0.6) + (0.4)(0.6)
\]

\[
= 0.54
\]

(c) What is the probability that someone has taken CS50 given that they took CS61?
Answer: This is Bayesian Inference.

\[
P(\text{CS50} \mid \text{CS61}) = \frac{P(\text{CS61} \mid \text{CS50})P(\text{CS50})}{P(\text{CS61})} \quad \text{by Bayes’ Theorem}
\]

\[
= \frac{(0.54)(0.5)}{P(\text{CS61})}
\]

\[
= \frac{(0.54)(0.5)}{\sum_{\text{CS50}=T,\text{CS51}=S} P(\text{CS61} \mid S,T)P(S,T)}
\]

Note that \(P(\text{CS50}, \text{CS51}) = P(\text{CS51} | \text{CS50})P(\text{CS50})\) and similarly for the other combinations of \(S\) and \(T\). You can see that as the number of dependent variables scales this problem becomes much harder to do by hand which is where probabilistic programming comes in.

(d) You want to use probabilistic programming for your new favorite hobby: bird watching! You live in a great area for birding, so you decide to run a linear regression on the correlation between the number of birds and the time of day. What is your output (or data) for the probabilistic program and what are your parameters?

Answer:
The output (or data) for your program could be the number of birds you saw at each hour of the day the prior day. We would then want to find the parameters \(m\) and \(b\) such that we get the best fit for \(y = mx + b\). This is a terrible model as it implies an infinite number of birds.

(e) Your linear regression didn’t work you had hoped it would, but you’ve moved on to a bigger question: where should birds land to find a worm? Say that birds land in a two dimensional field. What is the data you give your program and what are the parameters you hope to find?

Answer:
The data for your program is where birds landed in the field and where worms were found. We need to change the parameters. Rather than of parameters \(m\) and \(b\) (related \(y = mx + b\)), we now want to use the parameters such that there is a worm at \((x, y)\).