
1

Lambda Calculus
CS 152 (Spring 2021)

Harvard University

Tuesday, February 16, 2021



2

Today, we will learn about

I Lambda calculus

I Full β-reduction

I Call-by-value semantics

I Call-by-name semantics



3

Lambda calculus: Intuition

A function is a rule for determining a value from an
argument. Some examples of functions in
mathematics are

f (x) = x3

g(y) = y 3 − 2y 2 + 5y − 6.



4

Pure vs Applied Lambda Calculus

I The pure λ-calculus contains just function
definitions (called abstractions), variables, and
function applications.

I If we add additional data types and operations
(such as integers and addition), we have an
applied λ-calculus.



5

Pure Lambda Calculus: Syntax

e ::= x variable

| λx . e abstraction

| e1 e2 application



6

Abstractions



7

Abstractions

I An abstraction λx . e is a function

I Variable x is the argument

I Expression e is the body of the function.

I The expression λy . y × y is a function that
takes an argument y and returns square of y .



8

Applications

I An application e1 e2 requires that e1 is (or
evaluates to) a function, and then applies the
function to the expression e2.

I For example, (λy . y × y) 5 is 25



9

Examples

λx . x a lambda abstraction called the identity function

λx . (f (g x))) another abstraction

(λx . x) 42 an application

λy . λx . x an abstraction, ignores its argument

and returns the identity function



10

Lambda expressions extend as far to the
right as possible

λx . x λy . y is the same as λx . (x (λy . y)), and is
not the same as (λx . x) (λy . y).



11

Application is left-associative

e1 e2 e3 is the same as (e1 e2) e3.



12

Use parentheses!

In general, use parentheses to make the parsing of a
lambda expression clear if you are in doubt.



13

Variable binding

I An occurrence of a variable x in a term is
bound if there is an enclosing λx . e; otherwise,
it is free.

I A closed term is one in which all identifiers are
bound.



14

Variable binding: λx . (x (λy . y a) x) y



15

Variable binding: λx . (x (λy . y a) x) y

I Both occurrences of x are bound

I The first occurrence of y is bound

I The a is free

I The last y is also free, since it is outside the
scope of the λy .



16

Binding operator

The symbol λ is a binding operator: variable x is
bound in e in the expression λx . e.



17

α-equivalence

I λx . x is the same function as λy . y .

I Expressions e1 and e2 that differ only in the
name of bound variables are called α-equivalent
(“alpha equivalent”)

I Sometimes written e1 =α e2.



18

Quiz: α-equivalence

I Are λx . λy . x y and λy . λx . y x α-equivalent?



19

Higher-order functions

I In lambda calculus, functions are values.

I In the pure lambda calculus, every value is a
function, and every result is a function!



20

Higher-order functions

λf . f 42



21

Higher-order functions

λv . λf . (f v)

Takes an argument v and returns a function that
applies its own argument (a function) to v .



22

Semantics



23

β-equivalence

I We would like to regard (λx . e1) e2 as
equivalent to e1 where every (free) occurrence
of x is replaced with e2.

I E.g. we would like to regard (λy . y × y) 5 as
equivalent to 5× 5.



24

e1{e2/x}
I We write e1{e2/x} to mean expression e1 with

all free occurrences of x replaced with e2.

I We call (λx . e1) e2 and e1{e2/x} β-equivalent.

I Rewriting (λx . e1) e2 into e1{e2/x} is called a
β-reduction.

I This corresponds to executing a lambda
calculus expression.



25

Different semantics for the lambda
calculus

(λx . x + x) ((λy . y) 5)



26

Different semantics for the lambda
calculus

(λx . x + x) ((λy . y) 5)

We could use β-reduction to get either
((λy . y) 5) + ((λy . y) 5) or (λx . x + x) 5.



27

Evaluation strategies: Full β-reduction

Allows (λx . e1) e2 to step to e1{e2/x} at any time.



28

Full β-reduction: small-step operational
semantics

e1 −→ e ′1
e1 e2 −→ e ′1 e2

e2 −→ e ′2
e1 e2 −→ e1 e

′
2

e −→ e ′

λx . e −→ λx . e ′

β-reduction
(λx . e1) e2 −→ e1{e2/x}



29

Normal form

A term e is said to be in normal form when there is
no e ′ such that e −→ e ′.



30

Not every term has a normal form under
full β-reduction.

Consider Ω = (λx . x x) (λx . x x).

Ω = (λx . x x) (λx . x x) −→ (λx . x x) (λx . x x) = Ω

It’s an infinite loop!



31

Well-behaved nondeterminism

(λx . λy . y) Ω (λz . z)



32

Well-behaved nondeterminism

(λx . λy . y) Ω (λz . z)

This term has two redexes in it, the one with
abstraction λx , and the one inside Ω.



33

Well-behaved nondeterminism

I The full β-reduction strategy is
non-deterministic.

I When a term has a normal form, however, it
never has more than one.



34

Full β-reduction is confluent

Theorem (Confluence)
If e −→∗ e1 and e −→∗ e2 then there exists e ′ such
that e1 −→∗ e ′ and e2 −→∗ e ′.



35

Full β-reduction is confluent

Corollary
If e −→∗ e1 and e −→∗ e2 and both e1 and e2 are in
normal form, then e1 = e2.

Proof.
An easy consequence of confluence.



36

Normal Order Evaluation

I Normal order evaluation uses the full
β-reduction rules, except the left-most redex is
always reduced first.

I Will eventually yield the normal form, if one
exists.

I Allows reducing redexes inside abstractions



37

Call-by-value

I Call-by-value only allows an application to
reduce after its argument has been reduced to a
value and does not allow evaluation under a λ.

I Given an application (λx . e1) e2, CBV
semantics makes sure that e2 is a value before
calling the function.

I A value is an expression that can not be
reduced/executed/simplified any further.



38

CBV: Small step operational semantics

e1 −→ e ′1
e1 e2 −→ e ′1 e2

e −→ e ′

v e −→ v e ′

β-reduction
(λx . e) v −→ e{v/x}



39

CBV: Examples

(λx . λy . y x) (5 + 2) λx . x + 1 −→(λx . λy . y x) 7 λx . x + 1

−→(λy . y 7) λx . x + 1

−→(λx . x + 1) 7

−→7 + 1

−→8



40

(λf . f 7) ((λx . x x) λy . y) −→(λf . f 7) ((λy . y) (λy . y))

−→(λf . f 7) (λy . y)

−→(λy . y) 7

−→7



41

Call-by-name semantics

I More permissive that CBV.

I Less permissive than full β-reduction.

I Applies the function as soon as possible.

I No need to ensure that the expression to which
a function is applied is a value.



42

Call-by-name semantics

e1 −→ e ′1
e1 e2 −→ e ′1 e2

β-reduction
(λx . e1) e2 −→ e1{e2/x}



43

Call-by-name semantics: example

(λx . λy . y x) (5 + 2) λx . x + 1 −→(λy . y (5 + 2)) λx . x + 1

−→(λx . x + 1) (5 + 2)

−→(5 + 2) + 1

−→7 + 1

−→8

compare to CBV:

(λx . λy . y x) (5 + 2) λx . x + 1 −→(λx . λy . y x) 7 λx . x + 1

−→(λy . y 7) λx . x + 1

−→(λx . x + 1) 7

−→7 + 1

−→8



44

Call-by-name semantics: example

(λf . f 7) ((λx . x x) λy . y) −→((λx . x x) λy . y) 7

−→((λy . y) (λy . y)) 7

−→(λy . y) 7

−→7

compare to CBV:

(λf . f 7) ((λx . x x) λy . y) −→(λf . f 7) ((λy . y) (λy . y))

−→(λf . f 7) (λy . y)

−→(λy . y) 7

−→7



45

CBV vs CBN

One way in which CBV and CBN differ is when arguments to
functions have no normal forms.

(λx .(λy .y)) Ω

Under CBV semantics, this term does not have a normal form.
If we use CBN semantics, then we have

(λx .(λy .y)) Ω −→CBN λy .y



46

CBV and CBN

I CBV and CBN are common evaluation orders

I Many programming languages use CBV semantics

I “Lazy” languages, such as Haskell, typically use CBN
semantics, a more efficient semantics similar to CBN in
that it does not evaluate actual arguments unless
necessary

I However, Call-by-value semantics ensures that
arguments are evaluated at most once.



47

Break

I If possible, give a program that cannot reduce in CBN
and CBV, but reduces in full β-reduction.

I If possible, give a program that steps to the same
expression in CBN and CBV.

I Formulate the rules of CBV in big-step style.

I How would you create a let-binding in lambda calculus?

I How do we define e1{e2/x} formally?



48

Scratchpad



49

CBV in big-step

λx . e ⇓ λx . e

e1 ⇓ λx . e12 e2 ⇓ v2 e12{v2/x} ⇓ e ′

e1 e2 ⇓ e ′



50

e1{e2/x} formally

x{e/x} = e

y{e/x} = y if y 6= x

(λy . e1){e/x} = λy . (e1{e/x}) if y 6= x and y /∈ FV (e)

(e1 e2){e/x} = (e1{e/x}) (e2{e/x})


