Today, we will learn about

- Parametric polymorphism
- Records
- Subtyping: Covariant, Contravariant, Invariant
Parametric polymorphism
Parametric polymorphism

- *Polymorph* means “many forms”.

- *Polymorphism* is the ability of code to be used on values of different types.

- E.g. a polymorphic function is one that can be invoked with arguments of different types.

- A polymorphic datatype is one that can contain elements of different types.
Polymorphism used in modern languages
Polymorphism used in modern languages: Subtype polymorphism

- Gives a single term many types using the subsumption rule.

- E.g. a function with argument τ can operate on any value with a type that is a subtype of τ.
Polymorphism used in modern languages: Ad-hoc polymorphism

- The code appears to be polymorphic to the programmer, but the actual implementation is not.

- A typical example is overloading: using the same function name for functions with different kinds of parameters.

- Although it looks like a polymorphic function to the code that uses it, there are actually multiple function implementations (none being polymorphic) and the compiler invokes the appropriate one.
Polymorphism used in modern languages: Ad-hoc polymorphism

Ad-hoc polymorphism is a dispatch mechanism: the type of the arguments is used to determine (either at compile time or run time) which code to invoke.
Polymorphism used in modern languages: Parametric polymorphism

- Refers to code that is written without knowledge of the actual type of the arguments;

- The code is parametric in the type of the parameters.

- Examples include polymorphic functions in ML, or generics in Java 5.
Suppose we are working in the simply-typed lambda calculus, and consider a “doubling” function for integers

\[
doubleInt \triangleq \lambda f : \text{int} \to \text{int}. \lambda x : \text{int}. f (f x)
\]
doubleInt \triangleq \lambda f : \text{int} \rightarrow \text{int}. \lambda x : \text{int}. f \ (f \ x)

We could also write a double function for booleans. Or for functions over integers. Or for any other type...

doubleBool \triangleq \lambda f : \text{bool} \rightarrow \text{bool}. \lambda x : \text{bool}. f \ (f \ x)

doubleFn \triangleq \lambda f : (\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int}). \lambda x : \text{int} \rightarrow \text{int}. f \ (f \ x)
doubleInt ≜ \lambda f : \text{int} \to \text{int}. \lambda x : \text{int}. f (f \ x)

doubleBool ≜ \lambda f : \text{bool} \to \text{bool}. \lambda x : \text{bool}. f (f \ x)

doubleFn ≜ \lambda f : (\text{int} \to \text{int}) \to (\text{int} \to \text{int}). \lambda x : \text{int} \to \text{int}. f (f \ x)

In the simply typed lambda calculus, we need to write a new function for each type.
\[\text{doubleInt} \triangleq \lambda f : \text{int} \to \text{int}. \lambda x : \text{int}. f (f \, x)\]
\[\text{doubleBool} \triangleq \lambda f : \text{bool} \to \text{bool}. \lambda x : \text{bool}. f (f \, x)\]
\[\text{doubleFn} \triangleq \lambda f : (\text{int} \to \text{int}) \to (\text{int} \to \text{int}). \lambda x : \text{int} \to \text{int}. f (f \, x)\]

This violates the \textit{abstraction principle} of software engineering:

\textit{Each significant piece of functionality in a program should be implemented in just one place in the source code. When similar functions are carried out by distinct pieces of code, it is generally beneficial to combine them into one by abstracting out the varying parts.}
Parametric polymorphism: Polymorphic lambda calculus

We extend the simply-typed lambda calculus with abstraction over types, giving the *polymorphic lambda calculus*.
Polymorphic lambda calculus

- A type abstraction is a new expression, written $\Lambda X. e$, where Λ is the upper-case form of the Greek letter lambda, and X is a type variable.

- We also introduce a new form of application, called type application, or instantiation, written $e_1 [\tau]$.
Polymorphic lambda calculus

- When a type abstraction meets a type application during evaluation, we substitute the free occurrences of the type variable with the type.

- Instantiation does not require the program to keep run-time type information, or to perform type checks at run-time.

- It is just used as a way to statically check type safety in the presence of polymorphism.
Polymorphic lambda calculus: Syntax and operational semantics

The new syntax of the language is given by the following grammar.

\[e ::= n \mid x \mid \lambda x: \tau. e \mid e_1 \ e_2 \mid \Lambda X. \ e \mid e [\tau] \]
\[\nu ::= n \mid \lambda x: \tau. e \mid \Lambda X. e \]
Polymorphic lambda calculus: Evaluation rules

\[
E ::= [\cdot] \mid E \ e \mid \nu \ E \mid E \ [\tau]
\]

\[
e \rightarrow e'
\]

\[
E[e] \rightarrow E[e']
\]

\[\text{β-reduction} \quad \frac{\\quad}{\left(\lambda x:\tau. \ e\right) \ v \rightarrow e\{v/x\}}\]

\[\text{Type-reduction} \quad \frac{\\quad}{\left(\Lambda X. \ e\right) \ [\tau] \rightarrow e\{\tau/X\}}\]
In this language, the polymorphic identity function is written as

\[ID \triangleq \Lambda X. \lambda x : X. x \]
Polymorphic lambda calculus:

\[ID \triangleq \Lambda X. \lambda x : X. x \]

We can apply the polymorphic identity function to \texttt{int}, producing the identity function on integers.

\[(\Lambda X. \lambda x : X. x) \ [\text{int}] \rightarrow \lambda x : \text{int}. x\]

We can apply \(ID \) to other types as easily:

\[(\Lambda X. \lambda x : X. x) \ [\text{int} \rightarrow \text{int}] \rightarrow \lambda x : \text{int} \rightarrow \text{int}. x\]
The type of $\Lambda X. \, e$ is $\forall X. \, \tau$, where τ is the type of e, and may contain the type variable X. We use this notation because for any type X, expression e can have the type τ (which may mention X).

$$\tau ::= \text{int} \mid \tau_1 \rightarrow \tau_2 \mid X \mid \forall X. \, \tau$$
Typing judgments are now of the form $\Delta, \Gamma \vdash e : \tau$, where Δ is a set of type variables, and Γ is a typing context.

We also use an additional judgment $\Delta \vdash \tau \ ok$ to ensure that type τ uses only type variables from the set Δ.
Type checking expressions

$$
\Delta, \Gamma \vdash n : \text{int}
$$

$$
\frac{\Delta \vdash \tau \text{ ok}}{\Delta, \Gamma \vdash x : \tau} \quad \Gamma(x) = \tau
$$

$$
\Delta, \Gamma, x : \tau \vdash e : \tau' \quad \Delta \vdash \tau \text{ ok}
$$

$$
\frac{}{\Delta, \Gamma \vdash \lambda x : \tau. e : \tau \to \tau'}
$$

$$
\Delta, \Gamma \vdash e_1 : \tau \to \tau' \quad \Delta, \Gamma \vdash e_2 : \tau
$$

$$
\frac{}{\Delta, \Gamma \vdash e_1 \ e_2 : \tau'}
$$

$$
\Delta, \Gamma \vdash e : \forall X. \tau' \quad \Delta \vdash \tau \text{ ok}
$$

$$
\frac{}{\Delta, \Gamma \vdash e [\tau] : \tau'\{\tau / X\}}
$$

$$
\Delta, \Gamma \vdash \lambda x : \tau. e : \tau \to \tau'
$$

$$
\Delta, \Gamma \vdash \forall X. e : \forall X. \tau
$$

$$
\Delta, \Gamma \vdash e : \forall X. \tau' \quad \Delta \vdash \tau \text{ ok}
$$

$$
\frac{}{\Delta, \Gamma \vdash e [\tau] : \tau'\{\tau / X\}}
$$
Type checking expressions

\[\Delta \vdash X \text{ ok} \quad X \in \Delta \]

\[\Delta \vdash \text{int ok} \]

\[\Delta \vdash \tau_1 \text{ ok} \quad \Delta \vdash \tau_2 \text{ ok} \]

\[\Delta \vdash \tau_1 \rightarrow \tau_2 \text{ ok} \]

\[\Delta \cup \{X\} \vdash \tau \text{ ok} \]

\[\Delta \vdash \forall X. \tau \text{ ok} \]
Let’s consider the doubling operation again. We can write a polymorphic doubling operation as

$$double \triangleq \forall X. \lambda f : X \to X. \lambda x : X. f (f \ x).$$

The type of this expression is

$$\forall X. (X \to X) \to X \to X$$
Example:

\[
\text{double} \triangleq \forall X. \lambda f : X \to X. \lambda x : X. f\ (f\ x).
\]

\[
\forall X. (X \to X) \to X \to X
\]

We can instantiate this on a type, and provide arguments. For example,

\[
\text{double [int]}\ (\lambda n : \text{int}. \ n + 1)\ 7 \to (\lambda f : \text{int} \to \text{int}. \ \lambda x : \text{int}. f\ (f\ x))
\]

\[
(\lambda n : \text{int}. \ n + 1)\ 7 \to^* 9
\]
Example: $\lambda x. x \ x$

In the simply-typed lambda calculus, we had no way of typing the expression $\lambda x. x \ x$.

In the polymorphic lambda calculus, however, we can type this expression:

$$\vdash \lambda x : \forall X. X \to X. x \ [\forall X. X \to X] \ x$$

$$: \ (\forall X. X \to X) \to (\forall X. X \to X)$$
Records
Records

- We have previously seen binary products, i.e., pairs of values.

- Binary products can be generalized in a straightforward way to \(n \)-ary products, also called tuples.

- For example, \(<3, (), \text{true}, 42>\) is a 4-ary tuple containing an integer, a unit value, a boolean value, and another integer.

- Its type is \(\text{int} \times \text{unit} \times \text{bool} \times \text{int}\).
Records

- Records are a generalization of tuples.

- We annotate each field of record with a label, drawn from some set of labels \mathcal{L}.

- For example, $\{\text{foo} = 32, \text{bar} = \text{true}\}$ is a record value with an integer field labeled foo and a boolean field labeled bar.

- The type of the record value is written $\{\text{foo} : \text{int}, \text{bar} : \text{bool}\}$.
Records

We extend the syntax, operational semantics, and typing rules of the call-by-value lambda calculus to support records.

\[l \in L \]

\[
e ::= \cdots \mid \{ l_1 = e_1, \ldots, l_n = e_n \} \mid e.l
\]

\[
v ::= \cdots \mid \{ l_1 = v_1, \ldots, l_n = v_n \}
\]

\[
\tau ::= \cdots \mid \{ l_1 : \tau_1, \ldots, l_n : \tau_n \}
\]
Records: Evaluation contexts

\[E ::= \ldots \mid \{ l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = E, l_{i+1} = e_{i+1}, \ldots, l_n = e_n \} \mid E \cdot l \]
We also add a rule to access the field of a record.

\[
\{ l_1 = v_1, \ldots, l_n = v_n \}.l_i \rightarrow v_i
\]
Records: Typing rules

\[\forall i \in 1..n. \quad \Gamma \vdash e_i : \tau_i \]

\[\Gamma \vdash \{ l_1 = e_1, \ldots, l_n = e_n \} : \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]

\[\Gamma \vdash e : \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]

\[\Gamma \vdash e.l_i : \tau_i \]
Records: Typing rules

\[\forall i \in 1..n. \quad \Gamma \vdash e_i : \tau_i \]

\[\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]

\[\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]

\[\Gamma \vdash e.l_i : \tau_i \]

- The order of labels is important:
 \{lat = −40, long = 175\} has type \{lat: int, long: int\}, while \{long = 175, lat = −40\} has type \{long: int, lat: int\}.

- We will consider weakening this restriction in the next section.
Subtyping is a key feature of object-oriented languages.

Subtyping was first introduced in SIMULA, invented by Norwegian researchers Dahl and Nygaard, and considered the first object-oriented programming language.
The principle of subtyping

- If τ_1 is a subtype of τ_2 (written $\tau_1 \leq \tau_2$), then a program can use a value of type τ_1 whenever it would use a value of type τ_2.

- If $\tau_1 \leq \tau_2$, then τ_1 is sometimes referred to as the subtype, and τ_2 as the supertype.
The principle of subtyping

This is also referred to as the “subsumption typing rule” and can be expressed in a typing rule

\[
\text{Subsumption} \quad \frac{\Gamma \vdash e : \tau \quad \tau \leq \tau'}{\Gamma \vdash e : \tau'}
\]
The subtype relation is both reflexive and transitive.

\[
\tau \leq \tau \\
\tau_1 \leq \tau_2 \quad \tau_2 \leq \tau_3 \\
\tau_1 \leq \tau_3
\]
Let’s define the type \texttt{Point} to be the record type \{\texttt{x: int}, \texttt{y: int}\}, that contains two fields \texttt{x} and \texttt{y}, both integers. That is:

\[
\texttt{Point} = \{\texttt{x: int}, \texttt{y: int}\}.
\]
Subtyping for records

Let’s also define

Point3D = \{ x : \text{int}, y : \text{int}, z : \text{int} \}

as the type of a record with three integer fields x, y and z.
Subtyping for records

- Note that **Point3D** contains all of the fields of **Point**, and those have the same type as in **Point**.

- Thus it makes sense to say **Point3D** is a subtype of **Point**: **Point3D** \leq **Point**.

- Any piece of code that used a value of type **Point** could instead use a value of type **Point3D**.
We can write a subtyping rule for records.

\[
\{l_1 : \tau_1, \ldots, l_{n+k} : \tau_{n+k}\} \leq \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \quad k \geq 0
\]
Why not let the corresponding fields be in a subtyping relation?

For example, if $\tau_1 \leq \tau_2$ and $\tau_3 \leq \tau_4$, then is
\[\{ \text{foo : } \tau_1, \text{bar : } \tau_3 \} \text{ a subtype of } \{ \text{foo : } \tau_2, \text{bar : } \tau_4 \}? \]

This is the case so long as the fields of records are immutable.
We could relax the requirement that the order of fields must be the same.

\[\forall i \in 1..n. \ \exists j \in 1..m. \quad l'_i = l_j \wedge \tau_j \leq \tau'_i \]

\[\{ l_1 : \tau_1, \ldots, l_m : \tau_m \} \leq \{ l'_1 : \tau'_1, \ldots, l'_n : \tau'_n \} \]
Subtyping for products

Like records, we can allow the elements of a product to be in a subtyping relation.

\[\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2 \]

\[\tau_1 \times \tau_2 \leq \tau'_1 \times \tau'_2 \]
Subtyping for functions

Consider two function types $\tau_1 \rightarrow \tau_2$ and $\tau'_1 \rightarrow \tau'_2$.

What are the subtyping relations between τ_1, τ_2, τ'_1, and τ'_2 that should be satisfied in order for $\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2$ to hold?
Consider the following expression:

$$G \triangleq \lambda f : \tau'_1 \rightarrow \tau'_2. \lambda x : \tau'_1. f \ x.$$

This function has type

$$(\tau'_1 \rightarrow \tau'_2) \rightarrow \tau'_1 \rightarrow \tau'_2.$$
Subtyping for functions:

\[G \triangleq \lambda f : \tau_1' \to \tau_2'. \lambda x : \tau_1'. f \ x. \]

\[(\tau_1' \to \tau_2') \to \tau_1' \to \tau_2'. \]

Now suppose we had a function \(h : \tau_1 \to \tau_2 \) such that \(\tau_1 \to \tau_2 \leq \tau_1' \to \tau_2' \). By the subtyping principle, we should be able to give \(h \) as an argument to \(G \), and \(G \) should work fine.
Subtyping for functions:

\[G \triangleq \lambda f : \tau_1' \to \tau_2'. \lambda x : \tau_1'. f \ x. \]

\[(\tau_1' \to \tau_2') \to \tau_1' \to \tau_2'. \]

\[h : \tau_1 \to \tau_2 \]

\[\tau_1 \to \tau_2 \leq \tau_1' \to \tau_2' \]

Suppose that \(v \) is a value of type \(\tau_1' \). Then \(G \ h \ v \) will evaluate to \(h \ v \), meaning that \(h \) will be passed a value of type \(\tau_1' \).
Subtyping for functions:

\[G \triangleq \lambda f : \tau'_1 \rightarrow \tau'_2. \lambda x : \tau'_1. f \ x. \]

\[(\tau'_1 \rightarrow \tau'_2) \rightarrow \tau'_1 \rightarrow \tau'_2. \]

\[h : \tau_1 \rightarrow \tau_2 \]

\[\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2 \]

Since \(h \) has type \(\tau_1 \rightarrow \tau_2 \), it must be the case that \(\tau'_1 \leq \tau_1 \). (What could go wrong if \(\tau_1 \leq \tau'_1 \)?)
Subtyping for functions:

\[G \triangleq \lambda f : \tau'_1 \to \tau'_2. \lambda x : \tau'_1. f \ x. \]

\[(\tau'_1 \to \tau'_2) \to \tau'_1 \to \tau'_2. \]

\[h : \tau_1 \to \tau_2 \]

\[\tau_1 \to \tau_2 \leq \tau'_1 \to \tau'_2 \]

Furthermore, the result type of \(G \ h \ v \) should be of type \(\tau'_2 \) according to the type of \(G \), but \(h \ v \) will produce a value of type \(\tau_2 \), as indicated by the type of \(h \). So it must be the case that \(\tau_2 \leq \tau'_2 \).
Subtyping for functions

Putting these two pieces together, we get the typing rule for function types.

\[
\frac{\tau_1' \leq \tau_1 \quad \tau_2 \leq \tau_2'}{\tau_1 \rightarrow \tau_2 \leq \tau_1' \rightarrow \tau_2'}
\]
Subtyping for functions

\[
\begin{align*}
\tau_1' &\leq \tau_1 & \tau_2 &\leq \tau_2' \\
\overline{\tau_1 \rightarrow \tau_2} &\leq \overline{\tau_1' \rightarrow \tau_2'}
\end{align*}
\]

In this case subtyping for the function type is \textit{covariant} in the result type, and \textit{contravariant} in the argument type.
Suppose we have a location \(l \) of type \(\tau \) \texttt{ref}, and a location \(l' \) of type \(\tau' \) \texttt{ref}. What should the relationship be between \(\tau \) and \(\tau' \) in order to have \(\tau \) \texttt{ref} \(\leq \tau' \) \texttt{ref}?
Subtyping for locations

Let’s consider the following program \(R \), that takes a location \(x \) of type \(\tau' \, \text{ref} \) and reads from it.

\[
R \triangleq \lambda x : \tau' \, \text{ref}. \, !x
\]
Subtyping for locations

\[R \triangleq \lambda x : \tau' \ref. !x \]

The program \(R \) has the type \(\tau' \ref \rightarrow \tau' \). Suppose we gave \(R \) the location \(l \) as an argument. Then \(R \ l \) will look up the value stored in \(l \), and return a result of type \(\tau \) (since \(l \) is type \(\tau \ref \)).
Subtyping for locations

\[
R \triangleq \lambda x : \tau' \ ref. !x
\]

Since \(R \) is meant to return a result of type \(\tau' \ ref \), we thus want to have \(\tau \leq \tau' \).
Subtyping for locations:

This suggests that subtyping for reference types is covariant.

But consider the following program W, that takes a location x of type τ' ref, a value y of type τ', and writes y to the location.

$$W \triangleq \lambda x : \tau' \text{ ref}. \lambda y : \tau'. x := y$$

This program has type $\tau' \text{ ref} \rightarrow \tau' \rightarrow \tau'$.
Suppose we have a value v of type τ', and consider the expression $W \ l \ v$. This will evaluate to $l ::= v$, and since l has type $\tau \text{ ref}$, it must be the case that v has type τ, and so $\tau' \leq \tau$.

$$W \triangleq \lambda x : \tau' \ \text{ref}. \ \lambda y : \tau'. \ x ::= y$$
Subtyping for locations

But this suggests that subtyping for reference types is contravariant!
In fact, subtyping for reference types must be *invariant*: reference type $\tau \texttt{ref}$ is a subtype of $\tau' \texttt{ref}$ if and only if $\tau \leq \tau'$ and $\tau' \leq \tau$. Indeed, to be sound, subtyping for any mutable location must be invariant.
Subtyping for locations: Invariant subtyping

In fact, subtyping for reference types must be invariant: reference type $\tau \text{ ref}$ is a subtype of $\tau' \text{ ref}$ if and only if $\tau \leq \tau'$ and $\tau' \leq \tau$. Indeed, to be sound, subtyping for any mutable location must be invariant.

$$\frac{\tau \leq \tau' \quad \tau' \leq \tau}{\tau \text{ ref} \leq \tau' \text{ ref}}$$
Invariant subtyping

\[\tau \leq \tau' \quad \tau' \leq \tau \]

\[\Rightarrow \quad \tau \text{ ref} \leq \tau' \text{ ref} \]

In the premises for the rule above, why isn’t \(\tau \leq \tau' \) and \(\tau' \leq \tau \) equivalent to \(\tau \) and \(\tau' \) being exactly the same?

To see why not, consider the record types \{foo: int, bar: int\} and \{bar: int, foo: int\}.
Invariant subtyping vs Covariant subtyping: Java

Interestingly, in the Java programming language, arrays are mutable locations but have covariant subtyping!
Invariant subtyping vs Covariant subtyping: Java

Suppose that we have two classes Person and Student such that Student extends Person (that is, Student is a subtype of Person).
Invariant subtyping vs Covariant subtyping: Java

The following Java code is accepted, since an array of Student is a subtype of an array of Person, according to Java’s covariant subtyping for arrays.

```java
Person[] arr = new Student[] { new Student(“Alice”) };
```
Invariant subtyping vs Covariant subtyping: Java

This is fine as long as we only read from arr. The following code executes without any problems, since arr[0] is a Student which is a subtype of Person.

```
Person p = arr[0];
```
Invariant subtyping vs Covariant subtyping: Java

However, the following code, which attempts to update the array, has some issues.

\[
\text{arr}[0] = \text{new Person(“Bob”)};
\]
Invariant subtyping vs Covariant subtyping: Java

arr[0] = new Person("Bob");

Even though the assignment is well-typed, it attempts to assign an object of type Person into an array of Students!

In Java, this produces an ArrayStoreException, indicating that the assignment to the array failed.