
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Curry-Howard Correspondence; Existential types

Lecture 15 Tuesday, March 22, 2022

1 Curry-Howard Correspondence

There is a strong connection between types in programming languages and propositions in constructive logic
(also called intuitionistic logic). This correspondence was noticed by Haskell Curry and William Howard.
It is known as the Curry-Howard correspondence, and also as the propositions-as-types correspondence, and
proofs-as-programs correspondence.

Constructive logic equates the truth of formula with their provability. That is, for a statement φ to be
true, there must be a proof of φ. The key difference between constructive logic and classical logic is that in
constructive logic, the rule of excluded middle does not apply: it is not a tautology that either φ or ¬φ.

The inference rules and axioms for typing programs are very similar to the inference rules and axioms
for proving formulas in constructive logic. That is, types are like formulas, and programs are like proofs.

Conjunction = Product types For example, suppose we have an expression e1 with type τ1, and expres-
sion e2 with type τ2. Think of e1 as a proof of some logical formulas τ1, and e2 as a proof of some logical
formulas τ2. What would constitute a proof of the formulas τ1 ∧ τ2? We would need a proof of τ1 and a
proof of τ2. Say we put these proofs together in a pair: (e1, e2). This is a program with type τ1 × τ2. That is,
the product type τ1 × τ2 corresponds to conjunction!

Disjunction = Sum types Similarly, how do we prove τ1 ∨ τ2? Under constructive logic, we need either a
proof of τ1, or a proof of τ2. Thinking about programs and types, this means we need either an expression
of type τ1 or an expression of type τ2. We have a construct that meets this description: the sum type τ1 + τ2
corresponds to disjunction!

Implication = Function types What does the function type τ1 → τ2 correspond to? We can think of a
function of type τ1 → τ2 as taking an expression of type τ1 and producing something of type τ2, which
by the Curry-Howard correspondence, means taking a proof of proposition τ1 and producing a proof of
proposition τ2. This corresponds to implication: if τ1 is true, then τ2 is true.

Universal quantification = Parametric polymorphism The polymorphic lambda calculus introduced uni-
versal quantification over types: ∀X. τ . As the notation suggests, this corresponds to universal quantifica-
tion in constructive logic. To prove formula ∀X. τ , we would need a way to prove τ{τ ′/X} for all proposi-
tions τ ′. This is what the expression ΛX. e gives us: for any type τ ′, the type of the expression (ΛX. e) [τ ′] is
τ{τ ′/X}, where τ is the type of e.

Invalidity = uninhabited type So under the Curry-Howard correspondence, expression e of type τ is a
proof of proposition τ . If we have a proposition τ that is not true, then there is no proof for τ , i.e., there is
no expression e of type τ . A type that has no expressions with that type is called an uninhabited type. There
are many uninhabited types, such as ∀X. X . Uninhabited types correspond to false formulas. Inhabited
types are theorems.

1.1 Examples

Consider the formula
∀φ1, φ2, φ3. ((φ1 ⇒ φ2) ∧ (φ2 ⇒ φ3))⇒ (φ1 ⇒ φ3).

Lecture 15 Curry-Howard Correspondence; Existential types

The type corresponding to this formula is

∀X,Y, Z. ((X → Y)× (Y → Z))→ (X → Z).

This formula is a tautology. So there is a proof of the formula. By the Curry-Howard correspondence, there
should be an expression with the type ∀X,Y, Z. ((X → Y)× (Y → Z))→ (X → Z). Indeed, the following
is an expression with the appropriate type.

ΛX,Y, Z. λf : (X → Y)× (Y → Z). λx :X. (#2 f) ((#1 f) x)

We saw earlier in the course that we can curry a function. That is, given a function of type (τ1×τ2)→ τ3,
we can give a function of type τ1 → τ2 → τ3. We can do this with a function. That is, the expression

λf : (τ1 × τ2)→ τ3. λx :τ1. λy :τ2. f (x, y)

has type
((τ1 × τ2)→ τ3)→ (τ1 → τ2 → τ3).

The corresponding logical formula is (φ1 ∧ φ2 ⇒ φ3)⇒ (φ1 ⇒ (φ2 ⇒ φ3)), which is a tautology.

1.2 Negation and continuations

In constructive logic, if ¬τ is true, then τ is false, meaning there is no proof of τ .We can think of ¬τ as being
equivalent to τ ⇒ False, or, as the type τ → ⊥, where ⊥ is some uninhabited type such as ∀X. X . That is,
if ¬τ is true, then if you give me a proof of τ , I can give you a proof of False.

We have seen functions that take an argument, and never produce a result: continuations. Continuations
can be thought of as corresponding to negation.

Suppose that we have a special type Answer that is the return type of continuations. That is, a continu-
ation that takes an argument of type τ has the type τ → Answer. Assume further that we have no values
of type Answer, i.e., Answer is an uninhabited type.

A continuation-passing style translation of an expression e of type τ , CPS[[e]], has the form λk : [[τ]]→ Answer. . . . ,
where k is a continuation, [[τ]] is the translated type of τ , and the translation will evaluate e, and give the
result to k. Thus, the type of CPS[[e]] is ([[τ]] → Answer) → Answer. Under the Curry-Howard corre-
spondence, this type corresponds to ([[τ]]⇒ False)⇒ False, or, equivalently, ¬(¬[[τ]]), the double negation
of (the translation of) τ , which is equivalent to τ . CPS translation converts an expression of type τ to an
expression of type ([[τ]]→ Answer)→ Answer, which is equivalent to τ !

1.3 Theorem Proving

The Curry-Howard correspondence tells us that types correspond to formulas, or propositions, and that
programs correspond to proofs. So, by this analogy, when we have a proof of a theorem, we have a program.
What does it mean to run this program? That is, what is the executable content of a proof?

Well, let’s consider the following tautology in a propositional logic, where p, q, and r are propositions.

(p⇒ (q ⇒ r)) ⇒ (p ∧ q)⇒ r

The following is a derivation of this tautology.

p⇒ (q ⇒ r) ` p⇒ (q ⇒ r)

p ∧ q ` p ∧ q
p ∧ q ` p

p⇒ (q ⇒ r), p ∧ q ` q ⇒ r

p ∧ q ` p ∧ q
p ∧ q ` q

p⇒ (q ⇒ r), p ∧ q, p ∧ q ` r
p⇒ (q ⇒ r), p ∧ q ` r

p⇒ (q ⇒ r) ` (p ∧ q)⇒ r

` (p⇒ (q ⇒ r)) ⇒ (p ∧ q)⇒ r

Page 2 of 5

Lecture 15 Curry-Howard Correspondence; Existential types

(Note the use of Contraction to duplicate the assumption p ∧ q.)
Now, let’s use the Curry-Howard correspondence, and think about what a program would look like

that had the type
(τ1 → (τ2 → τ3))→ (τ1 × τ2)→ τ3

which corresponds to the tautological formula. Here we present the proof that such a program is well-
typed. There are a few things to note. First, the structure of the proof of well typedness has exactly the
same structure as the proof of the formula. We have highlighted the terms in red, leaving the types in black.
If we think about constructing the terms from the leaves of the proof down towards the root, note that term
construction is mechanical, based on which inference rule is applied.

f :τ1 → (τ2 → τ3) ` f :τ1 → (τ2 → τ3)

a :τ1 × τ2 ` a :τ1 × τ2
a :τ1 × τ2 ` #1 a :τ1

f :τ1 → (τ2 → τ3), a :τ1 × τ2 ` f (#1 a) :τ2 → τ3

a :τ1 × τ2 ` a :τ1 × τ2
a :τ1 × τ2 ` #2 a :τ2

f :τ1 → (τ2 → τ3), a :τ1 × τ2, a :τ1 × τ2 ` f (#1 a) (#2 a) :τ3

f :τ1 → (τ2 → τ3), a :τ1 × τ2 ` f (#1 a) (#2 a) :τ3

f :τ1 → (τ2 → τ3) ` λa :τ1 × τ2. f (#1 a) (#2 a) : (τ1 × τ2)→ τ3

` λf :: (τ1 → (τ2 → τ3)). λa :τ1 × τ2. f (#1 a) (#2 a) : (τ1 → (τ2 → τ3))→ (τ1 × τ2)→ τ3

Now, what is this program?

λf :: (τ1 → (τ2 → τ3)). λa :τ1 × τ2. f (#1 a) (#2 a)

This is the uncurry function! It takes in a function of type τ1 → (τ2 → τ3) and uncurrys the arguments,
producing a function of type (τ1 × τ2) → τ3. We got this program in a mechanical way, given the proof of
the formula (p⇒ (q ⇒ r)) ⇒ (p ∧ q)⇒ r.

More generally, if the logic is set up correctly, it is possible to extract executable content from proofs of
many theorems. For example, a proof of the pigeon-hole principal can provide an algorithm to find a pigeon
hole with at least two elements. More impressively, the executable content of a proof that it is possible for
a distributed system to reach an agreement is a protocol for achieving agreement.

2 Existential types

We saw above that universal quantification corresponds to parametric polymorphism. What does existen-
tial quantification correspond to? Turns out we can define existential types, which, by the Curry-Howard
correspondence, correspond to existential quantification.

We extend the simply-typed lambda calculus with existential types (and records). An existential type is
written ∃X. τ , where type variable X may occur in τ . If a value has type ∃X. τ , it means that it is a pair
{τ ′, v} of a type τ ′ and a value v, such that v has type τ{τ ′/X} .

Thinking about the Curry-Howard correspondence may provide some intuition for existential types.
As the notation and name suggest, the logical formula that corresponds to an existential type ∃X. τ is an
existential formula ∃X. φ, where X may occur in φ. In constructive logic, what would it mean for the
statement “there exists some X such that φ is true” to be true? In constructive logic, a statement is true
only if there is a proof for it. To prove “there exists some X such that φ is true” we must actually provide a
witness ψ, an entity that is a suitable replacement for X , and also, a proof that φ is true when we replace X
with witness ψ.

A value {τ ′, v} of type ∃X. τ exactly corresponds to a proof of an existential statement: type τ ′ is the
witness type, and v is a value with type τ{τ ′/X}.

We introduce a language construct to create existential values, and a construct to use existential values.
The syntax of the new language is given by the following grammar.

Page 3 of 5

Lecture 15 Curry-Howard Correspondence; Existential types

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

| { l1 = e1, . . . , ln = en } | e.l
| pack {τ1, e} as ∃X. τ2 | unpack {X,x} = e1 in e2

v ::= n | λx :τ. e | { l1 = v1, . . . , ln = vn } | pack {τ1, v} as ∃X. τ2
τ ::= int | τ1 → τ2 | { l1 :τ1, . . . , ln :τn } | X | ∃X. τ

Note that in this grammar, we annotate existential values with their existential type. The construct
to create an existential value, pack {τ1, e} as ∃X. τ2, is often called packing, and the construct to use an
existential value is called unpacking.

Before we present the operational semantics and typing rules, let’s see some examples to get an intuition
for packing and unpacking. Existential types provide us with a mechanism to reason about modules which
can hide their implementation details. That is, a module that wants to hide away its internal details tells
the external world that there is some type or types that describe its internal structures and implementation,
but the clients are not allowed to know anything about these implementation types, simply that they exist.

Here we create an existential value that implements a counter, without revealing details of its imple-
mentation.

let counterADT =
pack
{int, { new = 0,get = λi : int. i, inc = λi : int. i+ 1 } }

as
∃Counter. { new : Counter,get : Counter→ int, inc : Counter→ Counter }

in . . .

The abstract type name is Counter, and its concrete representation is int. The type of the variable
counterADT is ∃Counter. { new : Counter,get : Counter→ int, inc : Counter→ Counter }.

We can use the existential value counterADT as follows.

unpack {C, x} = counterADT in let y :C = x.new in x.get (x.inc (x.inc y))

Note that we annotate the pack construct with the existential type. That is, we explicitly state the type
∃Counter. Why is this? Without this annotation, we would not know which occurrences of the witness
type are intended to be replaced with the type variable, and which are intended to be left as the witness
type. In the counter example above, the type of expressions λi : int. i and λi : int. i+ 1 are both int→ int, but
one is the implementation of get, of type Counter→ int and the other is the implementation of inc, of type
Counter→ Counter.

We now define the operational semantics. We add two new evaluation contexts, and one evaluation rule
for unpacking an existential value.

E ::= · · · | pack {τ1, E} as ∃X. τ2 | unpack {X,x} = E in e

unpack {X,x} = (pack {τ1, v} as ∃Y. τ2) in e −→ e{v/x}{τ1/X}
The new typing rules make sure that existential values are used correctly. Note that code using an

existential value (e2 in unpack {X,x} = e1 in e2) does not know the witness type of the existential value of
type ∃X. τ1.

∆,Γ ` e :τ2{τ1/X}
∆,Γ ` pack {τ1, e} as ∃X. τ2 :∃X. τ2

∆,Γ ` e1 :∃X. τ1 X 6∈ ∆ ∆ ∪ {X},Γ, x :τ1 ` e2 :τ2 ∆ ` τ2 ok
∆,Γ ` unpack {X,x} = e1 in e2 :τ2

∆ ∪ {X} ` τ ok
∆ ` ∃X. τ ok

Page 4 of 5

Lecture 15 Curry-Howard Correspondence; Existential types

Note that we define well-formedness of existential types, similar to well-formedness of universal types.
In the typing rule for unpack {X,x} = e1 in e2, note that we have the premises X 6∈ ∆ and ∆ ` τ2 ok. The
first ensures that X is not currently a type variable in scope (and we can alpha-vary it to ensure that this
holds true). Why do we need the premise ∆ ` τ2 ok?

Page 5 of 5

