Lambda Calculus
CS 152 (Spring 2022)

Harvard University

Tuesday, February 15, 2022



Today, we will learn about

» Lambda calculus

» «-equivalence

» [-reduction

» Call-by-value semantics

» Call-by-name semantics


















A-calculus

* universal model of computation

e g:=X // variable

| Ax.e // function abstraction
| ee // function application



AX.



function



AX). e
|

parameter



/1 X @4— body



function

JE@ <)ooy

parameter




Lambda calculus: Intuition

A function is a rule for determining a value from an
argument. Some examples of functions in
mathematics are

f(x) = x3

g(y) =y>—2y* +5y — 6.



Pure vs Applied Lambda Calculus

» The pure A-calculus contains just function
definitions (called abstractions), variables, and
function applications.

» If we add additional data types and operations
(such as integers and addition), we have an
applied \-calculus.



Pure Lambda Calculus: Syntax

= X variable
| Ax.e abstraction
| e & application



Abstractions



Abstractions

» An abstraction Ax. e is a function
» Variable x is the parameter
» Expression e is the body of the function.

» The expression \y.y X y is a function that
takes an argument y and returns square of y.



Applications

» An application e; e, requires that e; is (or
evaluates to) a function, and then applies the
function to the expression e;.

» For example, (A\y.y x y) 5is 25



Examples

AX. X

Ax. (f (g x)))
(Ax.x) 42

AY. AX. X

a lambda abstraction called the identity function
another abstraction
an application

an abstraction, ignores its argument
and returns the identity function



Lambda expressions extend as far to the
right as possible

AX.x Ay.y is the same as Ax. (x (Ay.y)), and is
not the same as (Ax. x) (Ay.y).



Application is left-associative

e1 & ez is the same as (e &) es.



Use parentheses!

In general, use parentheses to make the parsing of a
lambda expression clear if you are in doubt.



Variable binding

» An occurrence of a variable x in a term is
bound if there is an enclosing A\x. e; otherwise,
it is free.

» A closed term is one in which all identifiers are
bound.



Variable binding: Ax.(x (Ay.y a) x) y



Variable binding: Ax.(x (Ay.y a) x) y

» Both occurrences of x are bound
» The first occurrence of y is bound
» The ais free

» The last y is also free, since it is outside the
scope of the \y.



Binding operator

The symbol A is a binding operator. variable x is
bound in e in the expression \x. e.



a-equivalence

» Ax.x is the same function as A\y.y.

» Expressions e; and e, that differ only in the
name of bound variables are called «-equivalent
(“alpha equivalent™)

» Sometimes written e; =, &.



Quiz: a-equivalence

» Are Ax.A\y.x y and \y. Ax.y x a-equivalent?



Higher-order functions

» |n lambda calculus, functions are values.

» In the pure lambda calculus, every value is a
function, and every result is a function!



Higher-order functions

M. f 42



Higher-order functions

AV AL (F v)

Takes an argument v and returns a function that
applies its own argument (a function) to v.



Semantics



[-equivalence

» We would like to regard (Ax. e;) e as
equivalent to e; where every (free) occurrence
of x is replaced with e,.

» E.g. we would like to regard (Ay.y X y) 5 as
equivalent to 5 x 5.



el{eg/x}

>

We write e;{ey/x} to mean expression e; with
all free occurrences of x replaced with e,.

We call (Ax.e1) e and e{ex/x} B-equivalent.

Rewriting (Ax. e) e into e;{ey/x} is called a
(-reduction.

This corresponds to executing a lambda
calculus expression.



Different semantics for the lambda
calculus

(Ax.x 4+ x) ((A\y.y) b)



Different semantics for the lambda
calculus

(Ax.x + x) ((A\y.y) 5)

We could use S-reduction to get either
((Ay.y) 5) + ((Ay.y) 5) or (Ax.x + x) 5.



Evaluation strategies: Full 5-reduction

Allows (Ax. e1) e, to step to e;{ey/x} at any time.



Full S-reduction: small-step operational
semantics

e1 — € & — €

e1 6 —r e & €16 — e €

e — ¢

Ax.e — \x. e

[-REDUCTION
(Ax.e1) & — er{er/x}



Normal form

A term e is said to be in normal form when there is
no €' such that e — €.



Not every term has a normal form under
full B-reduction.

Consider Q2 = (Ax. x x) (Ax. x x).

Q= (Ax. x x) (Ax.x x) — (Ax. x x) (Ax. x x) = Q

It's an infinite loop!



Well-behaved nondeterminism

(Ax.Ay.y) Q (Az.2)



Well-behaved nondeterminism

(Ax. Ay.y) Q (A\z.2)

This term has two redexes in it, the one with
abstraction A\x, and the one inside (2.



Well-behaved nondeterminism

» The full S-reduction strategy is
non-deterministic.

» \When a term has a normal form, however, it
never has more than one.



Full S-reduction is confluent

Theorem (Confluence)

If e —* e; and e —* e, then there exists €' such
that e, —* €' and e —* €’.



Full S-reduction is confluent

Corollary

If e —* e; and e —™* e, and both e; and e, are in
normal form, then e; = e,.

Proof.

An easy consequence of confluence. ]



Normal Order Evaluation

» Normal order evaluation uses the full
[-reduction rules, except the left-most redex is
always reduced first.

» Will eventually yield the normal form, if one
exists.

» Allows reducing redexes inside abstractions



Call-by-value

» Call-by-value only allows an application to
reduce after its argument has been reduced to a
value and does not allow evaluation under a .

» Given an application (Ax. e;) e, CBV
semantics makes sure that e, is a value before

calling the function.

» A value is an expression that can not be
reduced /executed /simplified any further.



CBV: Small step operational semantics

er — € e — ¢

16— e & ve —ve

B-REDUCTION

(Ax.e) v — e{v/x}



CBV: Examples

(Ax.Ay.y x) (54+2) Ax.x+1

— (A Ay y x) 7T Ax.x+ 1
—(A\y.y 7) Ax.x+1
—(Ax.x+1)7

—7+1

—8



(M.ET) (Ax.x x) Ay.y) —(AF.£7) ((Ay.y) (\y.y))
— (M. F7)(A\y.y)
—\y.y) 7



Call-by-name semantics

» Applies the function as soon as possible.

» No need to ensure that the expression to which
a function is applied is a value.



Call-by-name semantics

er — €

16— e &

[-REDUCTION

(Ax.e1) & — er{ex/x}



Call-by-name semantics: example

(Ax.Ay.y x) (54+2) Ax.x+1

compare to CBV:

(M. Ay.y x) (54+2) Ax.x+1

—(Ay.y (5+2)) Mx.x+1
—(Ax.x+1) (5+2)
—(b+2)+1

—7+1

—8

— (A Ay y x) 7T Ax.x+ 1
—(A\y.y 7) Ax.x+1
—(Ax.x+1)7

—7+1

—8



Call-by-name semantics: example

(M. ET) (Ax.x x) Ay.y) —((Ax.xx) Ay.y) 7

compare to CBV:

(M.AET) (Ax.x x) Ay.y) —(AF.F7) ((Ay.y) (\y.y))
—(Af.F7) (A\y.y)
—\y.y) 7



CBV vs CBN

One way in which CBV and CBN differ is when arguments to
functions have no normal forms.

(Ax.(Ay.y)) Q

Under CBV semantics, this term does not have a normal form.
If we use CBN semantics, then we have

(Ax.(A\y.y)) Q —cen Ay.y



CBV and CBN

» CBV and CBN are common evaluation orders
» Many programming languages use CBV semantics

» “Lazy” languages, such as Haskell, typically use
Call-by-need semantics, a more efficient semantics
similar to Call-by-name in that it does not evaluate
actual arguments unless necessary

» However, Call-by-value semantics ensures that
arguments are evaluated at most once.



Break

If possible, give a program that cannot reduce in CBN
and CBV, but reduces in full S-reduction.

If possible, give a program that steps to the same
expression in CBN and CBV.

Formulate the rules of CBV in big-step style.

How would you create a let-binding in lambda calculus?

» How do we define e;{e,/x} formally?



CBV in big-step

Ax.el Ax.e

er | Ax. e el v 612{V2/X}U v

et elv



e1{ey/x} formally

x{e/x}=e
yl{e/x} =y if y # x
(\y.e){e/x} = A\y. (el{e/x}) if y2xandy ¢ FV(e)

(&1 &){e/x} = (er{e/x}) (e2{e/x})



er{ex/x} (almost) formally

x{e/x}=e
yl{e/x} =y if y # x
(\y.e){e/x} = A\y. (el{e/x}) if y2xandy ¢ FV(e)

(&1 &){e/x} = (er{e/x}) (e2{e/x})



Alligator Eggs! by Bret Victor



<=
22-

Alligator Eggs! by Bret Victor.




Rules

e (-conversion
Ax.e[x] = Ay.e[y]

 [-reduction
(Ax.e1) e2 — e1{e2/x}

e y-conversion
(Ax.e x) = e if x does not occur free in e



* (-conversion

Ax.e[x] — Ay.ely] . . O

 [-reduction
(Ax.e1) e2 — e1{e2/x}

e y-conversion
(Ax.e x) — e if x does not occur free in e

image credit: Bret Victer



e (x-conversion

Ax.e[x] = Ay.e[y] S Q

 [-reduction
(Ax.e1) e2 — e1{e2/x}

e y-conversion
(Ax.e x) — e if x does not occur free in e

image credit: Bret Victer



p-reduction

H.

f- redex capture- av0|d|ng
substitution



p-reduction

(Ax.e1) e2 —» el{e2/x}



p-reduction

_> e1{e2/x]

[-redex



p-reduction

(Ax.e1) e2 —>.

capture- av0|d|ng
substitution



p-reduction

H.

f- redex capture- av0|d|ng
substitution



(AX.X) (AX.X) (Az.(AX.X) 2))



(AX.X) ((AX.X) (AZ.(AX.X) 2))




(AX.X) ((AX.X) (AZ.(AX.X) 2))

CBN



(AX.X) ((AX.X) (AZ.(AX.X) 2))

|

CBV




(AX.X) ((AX.X) (AZ.(AX.X) 2))

only allowed in
full



(AX.X) ((AX.X) (AZ.(AX.X) 2))

|

CBN CBV only allowed in
full




