Today, we will learn about

- Lambda calculus encodings
- Church numerals
- Recursion and fixed point-combinators
The pure lambda calculus contains only functions as values.

It is not exactly easy to write large or interesting programs in the pure lambda calculus.

We can however encode objects, such as booleans, and integers.
Booleans
We want to define functions TRUE, FALSE, AND, IF, and other operators such that the expected behavior holds, for example:

\[
\text{AND TRUE FALSE} = \text{FALSE} \\
\text{IF TRUE } e_1 \ e_2 = e_1 \\
\text{IF FALSE } e_1 \ e_2 = e_2
\]
TRUE and FALSE
TRUE and FALSE

\[TRUE \triangleq \lambda x. \lambda y. x \]
\[FALSE \triangleq \lambda x. \lambda y. y \]
The function \(\text{IF} \) should behave like \(\lambda b.\lambda t.\lambda f. \text{if } b = \text{TRUE} \text{ then } t \text{ else } f \). The definitions for \text{TRUE} and \text{FALSE} make this very easy.
The function \(IF \) should behave like

\[
\lambda b. \lambda t. \lambda f. \text{if } b = \text{TRUE} \text{ then } t \text{ else } f.
\]

The definitions for \(TRUE \) and \(FALSE \) make this very easy.

\[
IF \triangleq \lambda b. \lambda t. \lambda f. b \ t \ f
\]
NOT, AND, OR

\[\neg b \]

\[\land b_1 \land b_2 \]

\[\lor b_1 \lor b_2 \]
NOT, AND, OR

\[NOT \triangleq \lambda b. b \text{ FALSE TRUE} \]

\[AND \triangleq \lambda b_1. \lambda b_2. b_1 \ b_2 \text{ FALSE} \]

\[OR \triangleq \lambda b_1. \lambda b_2. b_1 \ \text{TRUE} \ b_2 \]
Church numerals

Church numerals encode the natural number n as a function that takes f and x, and applies f to x n times.

$0 \equiv \lambda f. \lambda x. x$

$1 \equiv \lambda f. \lambda x. f x$

$2 \equiv \lambda f. \lambda x. f (f x)$

Succ $\equiv \lambda n. \lambda f. \lambda x. f (n f x)$
Church numerals

Church numerals encode the natural number n as a function that takes f and x, and applies f to x n times.

\[
\begin{align*}
\bar{0} &\triangleq \lambda f. \lambda x. x \\
\bar{1} &\triangleq \lambda f. \lambda x. f \ x \\
\bar{2} &\triangleq \lambda f. \lambda x. f \ (f \ x) \\
\text{SUCC} &\triangleq \lambda n. \lambda f. \lambda x. f \ (n \ f \ x)
\end{align*}
\]
Addition

Let us define addition now. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2.

$$ADD \equiv \lambda n_1.\lambda n_2.n_1\text{SUCC}n_2$$
Let us define addition now. Intuitively, the natural number $n_1 + n_2$ is the result of applying the successor function n_1 times to n_2.

$$ADD \triangleq \lambda n_1. \lambda n_2. n_1 \ SUCC \ n_2$$
Recursion and the fixed-point combinators
We would like to define a function that computes factorials.

\[FACT \triangleq \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times FACT \ (n - 1) \]
Recursion and the fixed-point combinators

\[\text{FACT} \triangleq \lambda n. \text{IF} (\text{ISZERO } n) 1 (\text{TIMES } n (\text{FACT } (\text{PRED } n))) \]
Recursion and the fixed-point combinators

Note that this is not a definition, it’s a recursive equation.
Recursion Removal Trick

We can perform a “trick” to define a function $FACT$ that satisfies the recursive equation above.

First, let’s define a new function $FACT'$ that looks like $FACT$, but takes an additional argument f.

We assume that the function f will be instantiated with an actual parameter of... $FACT'$.
FACT' $\triangleq \lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f \ f \ (n - 1))$
Now we can define the factorial function $FACT$ in terms of $FACT'$.

$FACT \triangleq FACT' \cdot FACT'$
Let’s try evaluating $\text{FACT} \ 3 = m$.

$$m = (\text{FACT}' \ \text{FACT}') \ 3$$

$$= ((\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f \ f \ (n - 1))) \ \text{FACT}') \ 3$$

$$\longrightarrow (\lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (\text{FACT}' \ \text{FACT}' \ (n - 1))) \ 3$$

$$\longrightarrow \textbf{if } 3 = 0 \textbf{ then } 1 \textbf{ else } 3 \times (\text{FACT}' \ \text{FACT}' \ (3 - 1))$$

$$\longrightarrow 3 \times (\text{FACT}' \ \text{FACT}' \ (3 - 1))$$

$$\longrightarrow \ldots$$

$$\longrightarrow 3 \times 2 \times 1 \times 1$$

$$\longrightarrow^* 6$$
So we now have a technique for writing a recursive function f: write a function f' that explicitly takes a copy of itself as an argument, and then define

$$f \triangleq f' \ f'.$$
Fixed point combinators

Alternatively, we can express a recursive function as the fixed point of some other, higher-order function, and then find that fixed point.
Thus $FACT$ is a fixed point of the following function.

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))$$
Recall that if \(g \) is a fixed point of \(G \), then we have \(G \ g = g \).
Fixed point combinator

- A *combinator* is simply a closed lambda term

- Our functions *SUCC* and *ADD* are examples of combinators.

- It is possible to define programs using only combinators, thus avoiding the use of variables completely.
The Y combinator

The Y combinator is defined as

\[Y \equiv \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x)) \]

It was discovered by Haskell Curry, and is one of the simplest fixed-point combinators.
The **Y combinator**

The **Y combinator** is defined as

\[Y \triangleq \lambda f. (\lambda x. f (x\; x))\; (\lambda x. f (x\; x)). \]

It was discovered by Haskell Curry, and is one of the simplest fixed-point combinators.
The fixed point of the higher order function G is equal to $G (G (G (G (G \ldots))))$. Intuitively, the Y combinator unrolls this equality, as needed.
Let’s see it in action, on our function G, where

$$G = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f \ (n - 1))$$

and the factorial function is the fixed point of G. (We will use CBN semantics.)
\[\text{FACT} = Y \ G \]
\[= (\lambda f. (\lambda x. f (x \ x)) (\lambda x. f (x \ x))) \ G \]
\[\rightarrow (\lambda x. G (x \ x)) (\lambda x. G (x \ x)) \]
\[\rightarrow G ((\lambda x. G (x \ x)) (\lambda x. G (x \ x))) \]
\[= \beta G \ (\text{FACT}) \]
\[= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f \ (n - 1))) \ \text{FACT} \]
\[\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT} \ (n - 1)) \]
Note that the Y combinator works under CBN semantics, but not CBV. (What happens when we evaluate $Y \ G$ under CBV?)
There is a variant of the Y combinator, Z, that works under CBV semantics. It is defined as

$$Z \triangleq \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)).$$
The Turing fixed-point combinator

The Turing fixed-point combinator, denoted Θ, was discovered by Alan Turing.
Suppose we have a higher order function f, and want the fixed point of f. We know that Θf is a fixed point of f, so we have

\[\Theta f = f (\Theta f). \]
This means, that we can write the following recursive equation for Θ.

$$\Theta = \lambda f. f (\Theta f)$$

Now we can use the recursion removal trick we described earlier! Let’s define

$$\Theta' = \lambda t. \lambda f. f (t t f),$$

and define

$$\Theta \triangleq \Theta' \Theta'$$

$$= (\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))$$
Let’s try out the Turing combinator on our higher order function G that we used to define $FACT$. Again, we will use CBN semantics.

$$FACT = \Theta \ G$$

$$= ((\lambda t. \lambda f. f (t \ t \ f)) (\lambda t. \lambda f. f (t \ t \ f))) \ G$$

$$\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t \ t \ f)) (\lambda t. \lambda f. f (t \ t \ f)) f)) \ G$$

$$\rightarrow G ((\lambda t. \lambda f. f (t \ t \ f)) (\lambda t. \lambda f. f (t \ t \ f)) \ G)$$

$$= G (\Theta \ G)$$

$$= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1))) (\Theta \ G)$$

$$\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\Theta \ G) (n - 1))$$

$$= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (FACT (n - 1))$$
\[(YF) = (F (YF))\]