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Section 3

1 Lambda Calculus Basics

(a) Variable Bindings Fully parenthesize each expression based on the standard parsing of λ-calculus
expressions, i.e. you should parenthesize all applications and λ abstractions. Then, draw a box
around all binding occurrences of variables, underline all usage occurrence of variables, and circle all
free variables. For each bound usage occurrence, neatly draw an arrow to indicate its corresponding
binding occurrence. (You may also use other methods to indicate binding occurrences of variables,
usage occurrences of variables, free variables, and which uses correspond to which bindings.)

• λa. z λz. a y

• (λz. z) λb. b λa. a a

• λb. b λa. a b

• λz. z λz. z z

• λa. λb. (λa. a) λb. a

• x λx. λx. x (λx. x)

• y (λy. y)(λy. z)

(b) Alpha equivalence: Which of these three lambda-calculus expressions are alpha equivalent?

i. λx. y λa. a x

ii. λx. z λb. b x

iii. λa. y λb. b a

(Hint: to figure out whether two expressions are alpha equivalent, you need to know which variables
are free and which variables are bound.)

(c) Evaluation For each of the following terms, do the following: (a) write the result of one step of the
call-by-value reduction of the term; (b) write the result of one step of the call-by-name reduction of the
term; and (c) write all possible results of one step under full β-reduction. If the term cannot take a step,
please note that instead.

• (λz. λx. x x) (λy. y)

• λa. λb. (λc. c) (λd. d)

• (λx. x x x x) (λx. λy. x y)

• (λx. λy. x y) ((λw. λz. w z) (λx. x))

• (λa. (λb. b a) a) (λz. z) (λw.w)

(d) Suppose we have an applied lambda calculus with integers and addition. Write the sequence of
expressions that the following lambda calculus term evaluates to under call-by-value semantics. Then
do the same under call-by-name semantics.

(λf. f (f 8)) (λx. x+ 17)
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2 Lambda calculus encodings

(a) Evaluate AND FALSE TRUE under CBV semantics.

(b) Evaluate IF FALSE Ω λx. x under CBN semantics. What happens when you evaluated it under CBV
semantics?

(c) Evaluate ADD 2 1 under CBV semantics. (Make sure you know what the Church encoding of 1 and 2
are, and check that the answer is equal to the Church encoding of 3.)

(d) In class we made use of a combinator ISZERO , which takes a Church encoding of a natural number
n, and evaluates to TRUE if n is zero, and FALSE if n is not zero. (We don’t care what ISZERO does
if it is applied to a lambda term that is not a Church encoding of a natural number.)

Define ISZERO .

3 Recursion

Assume we have an applied lambda calculus with integers, booleans, conditionals, etc. Consider the fol-
lowing higher-order function H .

H , λf. λn. if n = 1 then true else if n = 0 then false else not (f (n− 1))

(a) Suppose that g is the fixed point of H . What does g compute?

(b) Compute Y H under CBN semantics. What has happened to the function call f (n− 1)?

(c) Compute (Y H) 2 under CBN semantics.

(d) Use the “recursion removal trick” to write another function that behaves the same as the fixed point
of H .
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