
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Definitional translations; References and continuations (Lectures 9–10)
Section and Practice Problems

Week 6: Tue Mar 9–Fri Mar 13, 2020

1 Definitional translations

Consider an applied lambda calculus with booleans, conjunction, a few constant natural numbers, and
addition, whose syntax is defined as follows.

e ::= x | λx. e | e1 e2 | true | false | e1 and e2 | 0 | 1 | 2 | e1 + e2 | if e1 then e2 else e3

Give a translation to the pure lambda calculus. Use the encodings of booleans and natural numbers that
we considered in class. (You can assume that both the source and target languages have full-beta reduction
semantics.)

Answer:

T [[x]] = x

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] T [[e2]]

T [[true]] = λx. λy. x

T [[false]] = λx. λy. y

T [[e1 and e2]] = (λb1. λb2. b1 b2 T [[false]]) T [[e1]] T [[e2]]

T [[0]] = λf. λx. x

T [[1]] = λf. λx. f x

T [[2]] = λf. λx. f (f x)

T [[e1 + e2]] = (λn1. λn2. n1 T [[SUCC ]] n2) T [[e1]] T [[e2]]

T [[if e1 then e2 else e3]] = T [[e1]] T [[e2]] T [[e3]]

T [[SUCC ]] = λn. λf. λx. f (n f x)

Note that if our target language had, say, CBV semantics, the translation of if e1 then e2 else e3 would evaluate
both branches i.e., would evaluate both T [[e2]] and T [[e3]]. Why would this be undesirable? (Hint: think about
if false then Ω else 0...) How could you change the translation of conditionals to avoid this issue?

2 Evaluation context

Consider the lambda calculus with let expressions and pairs (§1.3 of Lecture 9), and a semantics defined
using evaluation contexts. For each of the following expressions, show one step of evaluation. Be clear
about what the evaluation context is.

(a) (λx. x) (λy. y) (λz. z)



Definitional translations; References and continuations (Lectures 9–10)
Section and Practice Problems

Answer:
E = [·](λz. z)

E[(λx. x) (λy. y)] −→ (λy. y)(λz. z)

(b) let x = 5 in (λy. y + x) 9

Answer:
E = [·]

E[let x = 5 in (λy. y + x) 9] −→ (λy. y + 5) 9

(c) (4, ((λx. x) 8, 9))

Answer:
E = (4, ([·], 9))

E[(λx. x) 8] −→ (4, (8, 9))

(d) let x = #1 ((λy. y) (3, 4)) in x+ 2

Answer:
E = let x = #1 [·] in x+ 2)

E[(λy. y) (3, 4)] −→ let x = #1 (3, 4) in x+ 2)

3 References

(a) Evaluate the following program. (That is, show the sequence of configurations that the small-step
evaluation of the program will take. The initial store should by ∅, i.e., the partial function with an
empty domain.)

let a = ref 17 in let b = ref !a in !b+ (b := 8)

Answer:

〈let a = ref 17 in let b = ref !a in !b+ (b := 8), ∅〉 −→ 〈let b = ref !a in !b+ (b := 8), {(a, 17)}〉
−→ 〈let b = ref 17 in !b+ (b := 8), {(a, 17)}〉
−→ 〈!b+ (b := 8), {(a, 17), (b, 17)}〉
−→ 〈17 + (b := 8), {(a, 17), (b, 17)}〉
−→ 〈17 + 8, {(a, 17), (b, 8)}〉
−→ 〈25, {(a, 17), (b, 8)}〉

Page 2 of 2



Definitional translations; References and continuations (Lectures 9–10)
Section and Practice Problems

(b) Construct a program that represents the following binary tree, where an interior node of the binary
tree is represented by a value of the form (v, (`left , `right)), where v is the value of the node, `left is a
location that contains the left child, and `right is a location that contains the right child.

8

312

-1214

(It may be useful to define a function that creates internal nodes. Feel free to use let expressions to
make your program easier to read and write.)

Answer: Following the hint, we define a function that creates internal nodes:

let makeNode = λr. λtl. λtr. (r, (ref tl, ref tr)) in · · ·

and now the binary tree above can be constructed by filling in the · · · with:

let t′ = makeNode 12 14 (−12) in makeNode 8 t′ 3

4 Continuations

(a) Suppose we add let expressions to our CBV lambda-calculus. How would you define CPS[[let x =
e1 in e2]]? (Note, even though let x = e1 in e2 is equivalent to (λx. e2) e1, don’t use CPS[[(λx. e2) e1]], as
there is a better CPS translation of let x = e1 in e2. Why is that?)

Answer:
CPS[[let x = e1 in e2]]k = CPS[[e1]] (λx. CPS[[e2]] k)

(b) Translate the expression let f = λx. x + 1 in (f 19) + (f 21) into continuation-passing style. That is,
what is CPS[[let f = λx. x+ 1 in (f 19) + (f 21)]]?

(Use your definition of CPS[[let x = e1 in e2]] from above.)

Page 3 of 2



Definitional translations; References and continuations (Lectures 9–10)
Section and Practice Problems

Answer: Apologies for the small font. You can use the zoom feature in your PDF for better clarity.

CPS[[let f = λx. x+ 1 in (f 19) + (f 21)]]k

= CPS[[λx. x+ 1]] (λf. CPS[[(f 19) + (f 21)]]k)

= CPS[[λx. x+ 1]] (λf. CPS[[(f 19) + (f 21)]]k)

= (λf. CPS[[(f 19) + (f 21)]]k) (λx, k
′
. CPS[[x+ 1]]k

′
)

= (λf. CPS[[(f 19)]] (λv. CPS[[(f 21)]] (λw. k (v + w)))) (λx, k
′
. CPS[[x+ 1]]k

′
)

= (λf. CPS[[(f 19)]] (λv. CPS[[(f 21)]] (λw. k (v + w)))) (λx, k
′
. CPS[[x]] (λv. CPS[[1]] (λw. k′(v + w))))

= (λf. CPS[[(f 19)]] (λv. CPS[[(f 21)]] (λw. k (v + w)))) (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x)

= (λf. CPS[[f ]] (λf ′
. CPS[[19]] (λv. f ′

v (λv. CPS[[(f 21)]] (λw. k (v + w)))))) (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x)

= (λf. (λf
′
. (λv. f

′
v (λv

′
. CPS[[(f 21)]] (λw

′
. k (v

′
+ w

′
)))) 19) f) (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

= (λf. (λf
′
. (λv. f

′
v (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 f

′
)) 19) f) (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

−→ (λf
′
. (λv. f

′
v (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 f

′
)) 19) (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

−→ (λv. (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x) v (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x))) 19

−→ (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x) 19 (λv

′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x))

−→ (λv. (λw. (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) (v + w)) 1) 19

−→ (λw. (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) (19 + w)) 1

−→ (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) (19 + 1)

−→ (λv
′
. λf

′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (v

′
+ w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)) 20

−→ (λf
′′
. λv

′′
. f

′′
v
′′
(λw

′
. k (20 + w

′
)) 21 (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x)

−→ λv
′′
. (λx, k

′
. (λv. (λw. k

′
(v + w)) 1) x) v

′′
(λw

′
. k (20 + w

′
)) 21

−→ (λx, k
′
. (λv. (λw. k

′
(v + w)) 1) x) 21 (λw

′
. k (20 + w

′
))

−→ (λv. (λw. (λw
′
. k (20 + w

′
)) (v + w)) 1) 21

−→ (λw. (λw
′
. k (20 + w

′
)) (21 + w)) 1

−→ (λw
′
. k (20 + w

′
)) (21 + 1)

−→ (λw
′
. k (20 + w

′
)) 22

−→ k (20 + 22)

−→ k 42

Page 4 of 2


