
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Simply-typed lambda calculus; More types (Lectures 11-12)
Section and Practice Problems

Week 7: Tue Mar 23–Fri Mar 27, 2021

1 Simply-typed lambda calculus

(a) Add appropriate type annotations to the following expressions, and state the type of the expression.

(i) λa. a+ 4

Answer: With minimal annotations:
λa : int. a+ 4

and the expression has type int→ int.

(ii) λf. 3 + f ()

Answer: With minimal annotations:

λf :unit→ int. 3 + f ()

and the expression has type (unit→ int)→ int.

(iii) (λx. x) (λf. f (f 42))

Answer: With minimal annotations:

(λx : (int→ int)→ int. x) (λf : int→ int. f (f 42)).

Note that λx : (int→ int)→ int. x has type ((int→ int)→ int)→ ((int→ int)→ int).

The expression λf : int→ int. f (f 42) has type (int→ int)→ int.

The whole expression has type (int→ int)→ int.

(b) For each of the following expressions, give a derivation showing that the expression is well typed.

(i) (λf : int→ int. f 38) (λa : int. a+ 4)
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(ii) λg : (int→ int)→ (int→ int). g (λc : int. c+ 1) 7
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Answer: We have Γ = g : (int→ int)→ (int→ int) for succinctness.
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(iii) λf : int→ int. λg : int→ int. λx : int. g (f x)
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2 Type soundness

(a) Recall the substitution lemma that we used in the proof of type soundness.

Lemma (Substitution). If x :τ ′ ` e :τ and ` v :τ ′ then ` e{v/x} :τ .

Using the definition of substitution given in Assignment 2, prove this lemma. You may assume that v
does not have any free variables (i.e., FV (v) = ∅).
Remember to state what set you are performing induction on and what the property is that you are
proving for every element in that set. If you are not sure what cases you need to consider, or what
you are able to assume in each case of the inductive proof, we strongly suggest that you write down
the inductive reasoning principle for the inductively defined set.
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Answer: We recall the definition of substitution, since we will use it in this proof.

y{e/x} =

{
e if x = y

y if x 6= y

(e1 e2){e/x} = e1{e/x} e2{e/x}

(λy. e′){e/x} =


λy. e′ if x = y

λy. (e′{e/x}) if x 6= y and y 6∈ FV (e)

λz. ((e′{z/y}){e/x}) if x 6= y and y ∈ FV (e), where
z 6∈ FV (e) ∪ FV (e′) ∪ {x}

We extend substitution for the new syntactic forms in our language.

n{e/x} = n

(){e/x} = ()

e1 + e2{e/x} = (e1{e/x}) + (e2{e/x})

We proceed by structural induction on expressions. That is, we will perform induction on the set of expressions.
As an aside, the inductive reasoning principle for the set of expressions for this language is the following:

For any property P ,
If

• P (n) holds
• P (()) holds
• P (x) holds
• For all expressions e, if P (e) holds then P (λx :τ. e) holds
• For all expressions e1 and e2, if P (e1) and P (e2) holds then P (e1 e2) holds
• For all expressions e1 and e2, if P (e1) and P (e2) holds then P (e1 + e2) holds

then

for all expressions e, P (e) holds.

The property we will prove is actually stronger than the lemma. We will need this stronger property in order to
deal with the case for functions. The property is:

P (e) = ∀Γ, x, τ, v, τ ′. if Γ[x 7→ τ ′] ` e :τ and ` v :τ ′ then Γ ` e{v/x} :τ

We consider the possible cases (which correspond to the 6 bullet points in the inductive reasoning principle above).

• e = n

Assume that Γ[x 7→ τ ′] ` e :τ and ` v :τ ′.

Since e = n, we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

• e = ()

Assume that Γ[x 7→ τ ′] ` e :τ and ` v :τ ′.

Since e = (), we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

• e = y

Assume that Γ[x 7→ τ ′] ` e :τ and ` v :τ ′.

We consider two subcases, where x and y are the same variable, and where they are different variables.
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– x and y are the same variable.
In this case, we have τ = τ ′ (since e = x and Γ[x 7→ τ ′] ` e : τ means that, by inversion using rule
T-VAR, τ = τ ′ ). Also, we have e{v/x} = v. From ` v :τ ′ we can derive Γ ` v :τ ′, and so Γ ` e{v/x} :τ
holds.

– x and y are different variables.
In this case, we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

• e = λy :τy. e
′

Assume that Γ[x 7→ τ ′] ` e : τ and ` v : τ ′. Also assume that the property holds for e′ (i.e., the inductive
hypothesis).

We consider three subcases, corresponding to the three possible cases for substitution of λy :τy. e
′.

– x and y are the same variable.
In this case, we have e{v/x} = e. Thus, Γ ` e{v/x} :τ holds trivially.

– x and y are different variables and y 6∈ FV (v).
In this case, we have e{v/x} = λy :τy. (e

′{v/x}).
By inversion on Γ[x 7→ τ ′] ` e :τ , we have Γ[x 7→ τ ′][y 7→ τy] ` e′ :τ ′′ for some τ ′′ where τ = τy → τ ′′.
Since x and y are different variables, note that Γ[x 7→ τ ′][y 7→ τy] is equal to Γ′[x 7→ τ ′] where Γ′ =
Γ[y 7→ τy]. Because the inductive hypothesis holds for expression e′, and Γ′[x 7→ τ ′] ` e′ : τ ′′, we have
Γ′ ` (e′{v/x}) :τ ′′.
Using typing rule T-ABS, we have that Γ ` λy :τy. (e

′{v/x}) :τy → τ ′′. That is, we have Γ ` e{v/x} :τ ,
as required.

– x and y are different variables and y ∈ FV (v).
This case is actually impossible. Since v is a value, v can not have any free variables.

• e = e1 e2

Assume that Γ[x 7→ τ ′] ` e : τ and ` v : τ ′. Also assume that the property holds for e1 and for e2 (i.e., the
inductive hypothesis).

From Γ[x 7→ τ ′] ` e : τ , by inversion, we have that Γ[x 7→ τ ′] ` e1 : τ ′′ → τ and Γ[x 7→ τ ′] ` e2 : τ ′′ for some
type τ ′′. (That is, rule T-APP is the only typing rule that has a conclusion that matches Γ[x 7→ τ ′] ` e :τ , and
so it must be the case that the premises of T-APP are true.)

From the inductive hypothesis, we have that Γ[x 7→ τ ′] ` e1{v/x} :τ ′′ → τ and Γ[x 7→ τ ′] ` e2{v/x} :τ ′′.

From the definition of substitution, we have that e{v/x} = (e1{v/x}) (e2{v/x}).

Thus, using the typing rule T-APP, we have that Γ ` e{v/x} :τ , as required.

• e = e1 + e2

Assume that Γ[x 7→ τ ′] ` e : τ and ` v : τ ′. Also assume that the property holds for e1 and for e2 (i.e., the
inductive hypothesis).

From Γ[x 7→ τ ′] ` e :τ , by inversion, we have that Γ[x 7→ τ ′] ` e1 : int and Γ[x 7→ τ ′] ` e2 : int, and τ = int.
(That is, rule T-ADD is the only typing rule that has a conclusion that matches Γ[x 7→ τ ′] ` e : τ , and so it
must be the case that the premises of T-ADD are true.)

From the inductive hypothesis, we have that Γ[x 7→ τ ′] ` e1{v/x} : int and Γ[x 7→ τ ′] ` e2{v/x} : int.

From the definition of substitution, we have that e{v/x} = (e1{v/x}) + (e2{v/x}).

Thus, using the typing rule T-ADD, we have that Γ ` e{v/x} :τ , as required.

(b) Recall the context lemma that we used in the proof of type soundness.
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Lemma (Context). If ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′ then ` E[e1] :τ .

Prove this lemma.
Remember to state what set you are performing induction on and what the property is that you are
proving for every element in that set. If you are not sure what cases you need to consider, or what
you are able to assume in each case of the inductive proof, we strongly suggest that you write down
the inductive reasoning principle for the inductively defined set.

Answer: We proceed by structural induction on contexts E. That is, we are doing induction on the set of contexts,
which is inductively defined by the grammar:

E ::= [·] | E e | v E | E + e | v + E

As an aside, the inductive reasoning principle for the set of contexts is the following:

For any property P ,
If

• P ([·]) holds

• For all contexts E, if P (E) holds then P (E e) holds

• For all contexts E, if P (E) holds then P (v E) holds

• For all contexts E, if P (E) holds then P (E + e) holds

• For all contexts E, if P (E) holds then P (v + E) holds

then

for all contexts E, P (E) holds.

So, the property we are proving is:

P (E) = ∀e0, e1, τ, τ ′. if ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′ then ` E[e1] :τ

We consider the possible cases (which correspond to the 5 bullet points in the inductive reasoning principle above).

• E = [·].
Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′.

Since E[e0] = e0, we have τ = τ ′.

Moreover, since E[e1] = e1, from ` e1 :τ ′ we have ` E[e1] :τ as required.

• E = E′ e.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` E′[e0] e : τ , by inversion (i.e., rule T-APP is the only rule whose conclusion is an application expres-
sion), we must have that ` E′[e0] :τ ′′ → τ for some type τ ′′ and ` e :τ ′′.

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type τ ′′ → τ . Using the
typing rule T-APP, we can conclude that ` E′[e1] e :τ . That is, ` E[e1] :τ as required.

• E = v E′.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` v E′[e0] : τ , by inversion (i.e., rule T-APP is the only rule whose conclusion is an application expres-
sion), we must have that ` E′[e0] :τ ′′ for some type τ ′′, and ` v :τ ′′ → τ .

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type τ ′′. Using the typing
rule T-APP, we can conclude that ` v E′[e1] :τ . That is, ` E[e1] :τ as required.
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• E = E′ + e.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` E′[e0]+e :τ , by inversion (i.e., rule T-ADD is the only rule whose conclusion is an addition expression),
we must have that ` E′[e0] : int and ` e : int, and that τ = int.

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type int. Using the typing
rule T-ADD, we can conclude that ` E′[e1] + e :τ . That is, ` E[e1] :τ as required.

• E = v + E′.

Assume ` E[e0] :τ and ` e0 :τ ′ and ` e1 :τ ′, and that the property holds for E′.

Since ` v+E′[e0] :τ , by inversion (i.e., rule T-ADD is the only rule whose conclusion is an addition expression),
we must have that ` E′[e0] : int and ` v : int, and that τ = int.

By the inductive hypothesis (i.e., the property holds of E′), we have that E′[e1] has type int. Using the typing
rule T-ADD, we can conclude that ` v + E′[e1] :τ . That is, ` E[e1] :τ as required.

Since all these cases go though, using the inductive reasoning principle, we can conclude that the property holds
for all contexts. That is exactly the lemma we were trying to prove.

3 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 12§1.1).

(a) Write a program that constructs two values of type int + (int→ int), one using left injection, and one
using right injection.

Answer:

let a : int + (int→ int) = inlint+(int→int) 3 in
inrint+(int→int) λx : int. 3

(b) Write a function that takes a value of type int + (int → int) and if the value is an integer, it adds 7 to
it, and if the value is a function it applies the function to 42.

Answer:

λa : int + (int→ int). case a of λy : int. y + 7 | λf : int→ int. f 42

(c) Give a typing derivation for the following program.

λp : (unit→ int)× (int→ int). λx :unit + int. case x of #1 p | #2 p

Answer: For brevity, let e1 ≡ λx : unit + int. case x of #1 p | #2 p and let Γ = {p : (unit → int) × (int →
int), x :unit + int}

T-ABS

T-ABS

T-CASE

T-VAR
Γ ` x :unit + int

T-LPROJ

T-VAR
Γ ` p : (unit → int × int → int)

Γ ` #1 p :unit → int
T-RPROJ

T-VAR
Γ ` p : (unit → int × int → int)

Γ ` #2 p : int → int

Γ ` case x of #1 p | #2 p : int

p : (unit → int) × (int → int) ` λx :unit + int. case x of #1 p | #2 p : (unit + int) → int

` λp : (unit → int) × (int → int). e1 : ((unit → int) × (int → int)) → (unit + int) → int
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(d) Write a program that uses the term in part (c) above to produce the value 42.

Answer: We refer to the term in part (c) above as f .

f (λx :unit→ int. 42, λx : int. 41) inlunit+int ()

4 Recursion

(a) Use the µx. e expression to write a function that takes a natural number n and returns the sum of
all even natural numbers less than or equal to n. (You can assume you have appropriate integer
comparison operators, and also a modulus operator.)

Answer:
µf. λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ f (n− 2) else f (n− 1)

(b) Try executing your program by applying it to the number 5.

Answer: The program executes correctly and returns 6. For brevity, we will refer to the expression from the answer
above as F .

F 5

−→(λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 5

−→if 5 ≤ 0 then 0 else if (5 mod 2) = 0 then 5 + F (5− 2) else F (5− 1)

−→if false then 0 else if (5 mod 2) = 0 then 5 + F (5− 2) else F (5− 1)

−→if (5 mod 2) = 0 then 5 + F (5− 2) else F (5− 1)

−→if 1 = 0 then 5 + F (5− 2) else F (5− 1)

−→if false then 5 + F (5− 2) else F (5− 1)

−→F (5− 1)

−→(λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) (5− 1)

−→(λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 4

−→if 4 ≤ 0 then 0 else if (4 mod 2) = 0 then 4 + F (4− 2) else F (4− 1)

−→if false then 0 else if (4 mod 2) = 0 then 4 + F (4− 2) else F (4− 1)

−→if (4 mod 2) = 0 then 4 + F (4− 2) else F (4− 1)

−→if 0 = 0 then 4 + F (4− 2) else F (4− 1)

−→if true then 4 + F (4− 2) else F (4− 1)

−→4 + F (4− 2)

−→4 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) (4− 2)

−→4 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 2

−→4 + (if 2 ≤ 0 then 0 else if (2 mod 2) = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if false then 0 else if (2 mod 2) = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if (2 mod 2) = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if 0 = 0 then 2 + F (2− 2) else F (2− 1))
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−→4 + (if true then 2 + F (2− 2) else F (2− 1))

−→4 + (2 + F (2− 2))

−→4 + (2 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) (2− 2))

−→4 + (2 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 0)

−→4 + (2 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 0)

−→4 + (2 + (if 0 ≤ 0 then 0 else if (0 mod 2) = 0 then 0 + F (0− 2) else F (0− 1)))

−→4 + (2 + (if true then 0 else if (0 mod 2) = 0 then 0 + F (0− 2) else F (0− 1)))

−→4 + (2 + (0))

−→∗6

(c) Give a typing derivation for the following program. What happens if you execute the program?

µp : (int→ int)× (int→ int). (λn : int. n+ 1,#1 p)

Answer: For brevity, we write τp for the type (int→ int)× (int→ int).

T-REC

T-PAIR

T-ABS

T-SUM

T-VAR
p :τp, n : int ` n : int

T-INT
p :τp, n : int ` 1: int

p :τp, n : int ` n+ 1: int

p :τp ` λn : int. n+ 1: int→ int
T-PROJ

T-VAR
p :τp ` p :τp

p :τp ` #1 p : int→ int

p :τp ` (λn : int. n+ 1,#1 p) :τp

` µp :τp. (λn : int. n+ 1,#1 p) :τp

Now, if you actually tried to execute this expression under a Call-By-Name semantics, it would unfold the recur-
sive expression to (λn : int. n + 1,#1 P ), where P is the recursive expression µp : (int → int) × (int → int). (λn :
int. n + 1,#1 p). While the first element of the pair is a value, the second #2 P is not, and so we would attempt to
evaluate that expression. However, that requires evaluating the expression P ≡ µp : (int→ int)× (int→ int). (λn :
int. n+ 1,#1 p).

So, under Call-by-Name semantics, the program will not terminate.

5 References

(a) Give a typing derivation for the following program.

let a : int ref = ref 4 in
let b : (int→ int) ref = ref λx : int. x+ 38 in
!b !a

Answer: For brevity, we will write e for the expression above, and eb for the subexpression let b : (int →
int) ref = ref λx : int. x+ 38 in !b !a

T-LET

T-ALLOC

T-INT
` 4 : int

` ref 4 : int ref
T-LET

T-ALLOC

T-ABS

.

.

.1
a : int ref, x : int ` x + 38: int

a : int ref ` λx : int. x + 38: int → int

a : int ref ` refλx : int. x + 38:(int → int) ref

.

.

.2
a : int ref, b : (int → int) ref ` !b !a : int

a : int ref ` eb : int

` e : int
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The subderivation marked
...1 is:

T-ADD

T-VAR
a : int ref, x : int ` x : int

T-INT
a : int ref, x : int ` 38: int

a : int ref, x : int ` x+ 38: int

The subderivation marked
...2 is:

T-APP

T-DEREF

T-VAR
Γab ` b : (int→ int) ref

Γab ` !b : int→ int
T-DEREF

T-VAR
Γab ` a : int ref

Γab ` !a : int

Γab ` !b !a : int

where Γab = a : int ref, b : (int→ int) ref.

(b) Execute the program above for 4 small steps, to get configuration 〈e, σ〉. What is an appropriate Σ
such that ∅,Σ ` e :τ and Σ ` σ?

Answer:

〈let a : int ref = ref 4 in let b : (int→ int) ref = ref λx : int. x+ 38 in !b !a, ∅〉
−→〈let a : int ref = `a in let b : (int→ int) ref = ref λx : int. x+ 38 in !b !a, [`a 7→ 4]〉
−→〈let b : (int→ int) ref = ref λx : int. x+ 38 in !b !`a, [`a 7→ 4]〉
−→〈let b : (int→ int) ref = `b in !b !`a, [`a 7→ 4, `b 7→ λx : int. x+ 38]〉
−→〈!`b !`a, [`a 7→ 4, `b 7→ λx : int. x+ 38]〉

An appropriate store typing context is Σ = `a 7→ int, `b 7→ int→ int.
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