
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism;
Existential Types

Section and Practice Problems

Section 8

1 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does
it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing
rules.)

• ΛA. λx :A→ int. 42

• λy :∀X. X → X. (y [int]) 17

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a

• ΛA.ΛB.ΛC. λf :A→ B → C. λb :B. λa :A. f a b

Answer:

• ΛA. λx :A→ int. 42 has type
∀A. (A→ int)→ int

• λy :∀X. X → X. (y [int]) 17 has type

(∀X. X → X)→ int

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a has type

∀Y. ∀Z. (Y → Z)→ Y → Z

• ΛA.ΛB.ΛC. λf :A→ B → C. λb :B. λa :A. f a b has type

∀A. ∀B. ∀C. (A→ B → C)→ B → A→ C

(b) For each of the following types, write an expression with that type.

• ∀X. X → (X → X)

• (∀C. ∀D. C → D)→ (∀E. int→ E)

• ∀X. X → (∀Y. Y → X)

Answer:

• ∀X. X → (X → X) is the type of
ΛX. λx :X.λy :X. y

• (∀C. ∀D. C → D)→ (∀E. int→ E) is the type of

λf :∀C. ∀D. C → D.ΛE. λx : int. (f [int] [E]) x



Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
Section and Practice Problems

• ∀X. X → (∀Y. Y → X) is the type of

ΛX. λx :X.ΛY. λy :Y. x

2 Records and Subtyping

(a) Assume that we have a language with references and records.

(i) Write an expression with type

{ cell : int ref, inc : unit→ int }

such that invoking the function in the field inc will increment the contents of the reference in the
field cell.

Answer: The following expression has the appropriate type.

let x = ref 14 in
{ cell = x, inc = λu :unit. x := (!x+ 1) }

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an
expression that increments the contents of the cell twice.

Answer:
let z = y.inc () in y.inc ()

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will
need to use the subsumption rule.)

(λx :{dogs : int, cats : int}. x.dogs + x.cats) {dogs = 2, cats = 7,mice = 19}

Answer:

For brevity, let e1 ≡ λx :{dogs : int, cats : int}. x.dogs+x.cats) and let e2 ≡ {dogs = 2, cats = 7,mice = 19}.
The derivation has the following form.

T-APP

...1
` e1 :{dogs : int, cats : int} → int

...2
` e2 :{dogs : int, cats : int}

` e1 e2 : int

The derivation of e1 is straight forward:

Page 2 of 7



Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
Section and Practice Problems

T-A
BS

T-A
DD

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}
`
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}
`
x.

do
gs
: in

t

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}
`
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}
`
x.

cat
s :

int

x
:{

do
gs
: i

nt, c
ats

: i
nt}
`
x.

do
gs
+
x.

cat
s :

int

`
e1
:{

do
gs
: i

nt, c
ats

: i
nt}
→

int

The derivation of e2 requires the use of subsumption, since we need to show that e2 ≡ {dogs = 2, cats =
7,mice = 19} has type {dogs : int, cats : int}.

` 2: int ` 7: int ` 19: int

` {dogs = 2, cats = 7, mice = 19} :{dogs : int, cats : int, mice : int} {dogs : int, cats : int, mice : int} ≤ {dogs : int, cats : int}
` {dogs = 2, cats = 7, mice = 19} :{dogs : int, cats : int}

(c) Suppose that Γ is a typing context such that

Γ(a) = {dogs : int, cats : int,mice : int}
Γ(f) = {dogs : int, cats : int} → {apples : int, kiwis : int}

Page 3 of 7



Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
Section and Practice Problems

Write an expression e that uses variables a and f and has type {apples : int} under context Γ, i.e.,
Γ ` e :{apples : int}. Write a typing derivation for it.

Answer: A suitable expressions is f a. Note that f is a function that expects an expression of type {dogs :
int, cats : int} as an argument. Variable a is of type {dogs : int, cats : int,mice : int}, which is a subtype, so we
can use a as an argument to f .

Function f returns a value of type {apples : int, kiwis : int} but our expression e needs to return a value of type
{apples : int}. But {apples : int, kiwis : int} is a subtype of {apples : int}, so it works out.

Here is a typing derivation for it. We abbreviate type {dogs : int, cats : int,mice : int} to DCM and abbreviate
type {dogs : int, cats : int} to DC.

Which of the inference rules are uses of subsumption? Some of the derivations have been elided. Fill them in.

Γ
` f

:{d
og

s :
int, c

ats
: in

t}
→
{ap

ple
s :

int, k
iw

is :
int}

Γ
` a

:D
CM

. . .

DCM
≤

DC

Γ
` a

:D
C

Γ
` f

a :
{ap

ple
s : in

t, k
iw

is :
int}

. . .

{ap
ple

s : in
t, k

iw
is :

int}
≤
{ap

ple
s : in

t}

Γ
` f

a :
{ap

ple
s : in

t}

Page 4 of 7



Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
Section and Practice Problems

(d) Which of the following are subtypes of each other?

(a) {dogs : int, cats : int} → {apples : int}
(b) {dogs : int} → {apples : int}
(c) {dogs : int} → {apples : int, kiwis : int}
(d) {dogs : int, cats : int,mice : int} → {apples : int, kiwis : int}
(e) ({apples : int}) ref

(f) ({apples : int, kiwis : int}) ref

(g) ({kiwis : int, apples : int}) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and
for pairs that aren’t subtypes, also make sure you understand).

Answer: Of the function types:

• (b) is a subtype of (a)

• (c) is a subtype of (b)

• (c) is a subtype of (d)

• (c) is a subtype of (a)

• (d) is not a subtype of either (a) or (b), or vice versa

The key thing is that for τ1 → τ2 to be a subtype of τ ′1 → τ ′2, we must be contravariant in the argument type
and covariant in the result type, i.e., τ ′1 ≤ τ1 and τ2 ≤ τ ′2.

Let’s consider why (b) is a subtype of (a), i.e., {dogs : int} → {apples : int} ≤ {dogs : int, cats : int} → {apples :
int}. Suppose we have a function fb of type {dogs : int} → {apples : int}, and we want to use it somewhere that
wants a function ga of type {dogs : int, cats : int} → {apples : int}. Let’s think about how ga could be used: it
could be given an argument of type {dogs : int, cats : int}, and so fb had better be able to handle any record that
has the fields dogs and cats. Indeed, fb can be given any value of type {dogs : int}, i.e., any record that has a field
dogs. So fb can take any argument that gb can be given The other way that a function can be used is by taking
the result of applying it. The result types of the functions are the same, so we have no problem there. Here is a
derivation showing the subtyping relation:

{dogs : int, cats : int} ≤ {dogs : int} {apples : int} ≤ {apples : int}
{dogs : int} → {apples : int} ≤ {dogs : int, cats : int} → {apples : int}

Let’s consider why (d) is not a subtype of (a) and (a) is not a subtype of (d). (d) is not a subtype of (a) since they
are not contravariant in the argument type (i.e., the argument type of (a) is not a subtype of the argument type
of (d)). (a) is not a subtype of (d) since the result type of (a) is not a subtype of the result type of (d) (i.e., they
are not covariant in the result type).

For the ref types:

• (f) is a subtype of (g) (and vice versa) assuming the more permissive subtyping rule for records that allows
the order of fields to be changed.

• (e) is not a subtype of either (f) or (g), or vice versa.

Page 5 of 7



Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
Section and Practice Problems

3 Curry-Howard isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding
type, and come up with a term that has the corresponding type.

For example, for the logical formula ∀φ.φ =⇒ φ, the corresponding type is ∀X. X → X , and a term
with that type is ΛX. λx :X.x. Another example: for the logical formula τ1 ∧ τ2 =⇒ τ1, the corresponding
type is τ1 × τ2 → τ1, and a term with that type is λx :τ1 × τ2.#1 x.

You may assume that the lambda calculus you are using for terms includes integers, functions, products,
sums, universal types and existential types.

(a) ∀φ. ∀ψ. φ ∧ ψ =⇒ ψ ∨ φ

Answer: The corresponding type is

∀X. ∀Y. X × Y → Y +X

A term with this type is
ΛX. ΛY. λx :X × Y. inlY+X #2 x

(b) ∀φ. ∀ψ. ∀χ. (φ ∧ ψ =⇒ χ) =⇒ (φ =⇒ (ψ =⇒ χ))

Answer: The corresponding type is

∀X. ∀Y. ∀Z. (X × Y → Z)→ (X → (Y → Z))

A term with this type is

ΛX. ΛY. ΛZ.λf :X × Y → Z. λx :X.λy :Y. f (x, y)

Note that this term uncurries the function. It is the opposite of the currying we saw in class.

(c) ∃φ. ∀ψ. ψ =⇒ φ

Answer: The corresponding type is
∃X. ∀Y. Y → X

A term with this type is
pack {int,ΛY. λy :Y. 42} as ∃X. ∀Y. Y → X

(d) ∀ψ. ψ =⇒ (∀φ. φ =⇒ ψ)

Answer: The corresponding type is
∀Y. Y → (∀X. X → Y )

A term with this type is
ΛY. λa :Y.ΛX. λx :X. a

Primitive propositions in logic correspond

Page 6 of 7



Parametric Polymorphism; Records and Subtyping; Curry-Howard Isomorphism; Existential Types
Section and Practice Problems

(e) ∀ψ. (∀φ. φ =⇒ ψ) =⇒ ψ

Answer: A corresponding type is
∀Y. (∀X. X → Y )→ Y

A term with this type is
ΛY. λf :∀X. X → Y. f [int] 42

4 Existential types

(a) Write a term with type ∃C. { produce : int → C, consume : C → bool }. Moreover, ensure that calling
the function produce will produce a value of type C such that passing the value as an argument to
consume will return true if and only if the argument to produce was 42. (Assume that you have an
integer comparison operator in the language.)

Answer:

In the following solution, we use int as the witness type, and implement produce using the identity function,
and implement consume by testing whether the value of type C (i.e., of witness type int) is equal to 42.

pack {int, { produce = λa : int. a, consume = λa : int. a = 42 }}
as ∃C. { produce : int→ C, consume : C → bool }

(b) Do the same as in part (a) above, but now use a different witness type.

Answer: Here’s another solution where instead we use bool as the witness type, and implement produce by
comparing the integer argument to 42, and implement consume as the identity function.

pack {bool, { produce = λa : int. a = 42, consume = λa :bool. a }}
as ∃C. { produce : int→ C, consume : C → bool }

(c) Assuming you have a value v of type ∃C. { produce : int → C, consume : C → bool }, use v to
“produce” and “consume” a value (i.e., make sure you know how to use the unpack {X,x} = e1 in e2
expression.

Answer: unpack {D, r} = v in
let d = r.produce 19 in
r.consume d

Page 7 of 7


