1 Type Inference

(a) Recall the constraint-based typing judgment $\Gamma \vdash e : \tau \triangleright C$. Give inference rules for products and sums. That is, for the following expressions.

- (e_1, e_2)
- $\#1 e$
- $\#2 e$
- $\text{inl}_{\tau_1 + \tau_2} e$
- $\text{inr}_{\tau_1 + \tau_2} e$
- $\text{case } e_1 \text{ of } e_2 | e_3$

Answer:
Note that in all of the rules below except for the rule for pairs (e_1, e_2), the types in the premise and conclusion are connected only through constraints. The reason for this is the same as in the typing rule for function application, and for addition: we may not be able to derive that the premise has the appropriate type, e.g., for a projection $\#1 e$, we may not be able to derive that $\Gamma \vdash e : \tau_1 \times \tau_2 \triangleright C$. We instead use constraints to ensure that the derived type is appropriate.

\[
\frac{\Gamma \vdash e_1 : \tau_1 \triangleright C_1 \quad \Gamma \vdash e_2 : \tau_2 \triangleright C_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \triangleright C_1 \cup C_2}
\]

\[
\frac{\Gamma \vdash e : \tau \triangleright C}{\Gamma \vdash \#1 e : X \triangleright C \cup \{\tau \equiv X \times Y\}, X, Y \text{ are fresh}}
\]

\[
\frac{\Gamma \vdash e : \tau \triangleright C}{\Gamma \vdash \#2 e : Y \triangleright C \cup \{\tau \equiv X \times Y\}, X, Y \text{ are fresh}}
\]

\[
\frac{\Gamma \vdash \text{inl}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \triangleright C \cup \{\tau \equiv \tau_1\}}{\Gamma \vdash e : \tau \triangleright C}
\]

\[
\frac{\Gamma \vdash \text{inr}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \triangleright C \cup \{\tau \equiv \tau_2\}}{\Gamma \vdash e : \tau \triangleright C}
\]

\[
\frac{\Gamma \vdash e_1 : \tau_1 \triangleright C_1 \quad \Gamma \vdash e_2 : \tau_2 \triangleright C_2 \quad \Gamma \vdash e_3 : \tau_3 \triangleright C_3}{\Gamma \vdash \text{case } e_1 \text{ of } e_2 | e_3 : Z \triangleright C_1 \cup C_2 \cup C_3 \cup \{\tau_1 \equiv X + Y, \tau_2 \equiv X \rightarrow Z, \tau_3 \equiv Y \rightarrow Z\}, X, Y, Z \text{ are fresh}}
\]

(b) Determine a set of constraints C and type τ such that

\[
\vdash \lambda x : A. \lambda y : B. (\#1 y) + (x (\#2 y)) + (x 2) : \tau \triangleright C
\]

and give the derivation for it.
Type Inference
Section and Practice Problems

Answer:

\[C = \{ B \equiv X \times Y , \; X \equiv \text{int} , \; B \equiv Z \times W , \; A \equiv W \rightarrow U , \; U \equiv \text{int} , \; A \equiv \text{int} \rightarrow V , \; V \equiv \text{int} \} \]

\[\tau \equiv A \rightarrow B \rightarrow \text{int} \]

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset a really really big derivation).

The expression \(\#1 y \) requires us to add a constraint that the type of \(y \) (i.e., \(B \)) is equal to a product type for some fresh variables \(X \) and \(Y \), thus constraint \(B \equiv X \times Y \). (And expression \(\#1 y \) has type \(X \).

The expression \(\#2 y \) similarly requires us to add a constraint that the type of \(y \) (i.e., \(B \)) is equal to a product type for some fresh variables \(Z \) and \(W \), thus constraint \(B \equiv Z \times W \). (And expression \(\#2 y \) has type \(W \).

The expression \(x \ (\#2 y) \) requires us to add a constraint that unifies the type of \(x \) (i.e., \(A \)) with a function type \(W \rightarrow U \) (where \(W \) is the type of \(\#2 y \) and \(U \) is a fresh type variable).

The expression \(x \ 2 \) requires us to add a constraint that unifies the type of \(x \) (i.e., \(A \)) with a function type \(\text{int} \rightarrow V \) (where \(\text{int} \) is the type of expression \(2 \) and \(V \) is a fresh type).

The addition operations leads us to add constraints \(X \equiv \text{int} , \; U \equiv \text{int} , \; \text{and} \; V \equiv \text{int} \) (i.e., the types of expressions \(\#1 y) , \; (x \ (\#2 y)) \) and \((x \ 2) \) must all unify with \(\text{int} \).

(c) Recall the unification algorithm from Lecture 16. What is the result of \(\text{unify}(C) \) for the set of constraints \(C \) from Question 1(b) above?

Answer: The result is a substitution equivalent to

\[[A \mapsto \text{int} \rightarrow \text{int} , \; B \mapsto \text{int} \times \text{int} , \; X \mapsto \text{int} , \; Y \mapsto \text{int} , \; Z \mapsto \text{int} , \; W \mapsto \text{int} , \; U \mapsto \text{int} , \; V \mapsto \text{int}] \]