
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Sub-structural type systems; Algebraic structures
Section and Practice Problems

Section 10

1 Sub-structural type systems

Recall the linear lambda calculus from Lecture 17.

(a) Suppose we extended the language with a negation operation not e. Intuitively, e needs to have
boolean type, and the expression evaluates e to a value v and then evaluates to the negation of the
boolean represented by v. The result of the negation is unrestricted (i.e., it is not linear). Write a typing
rule for the negation operator.

Answer:

Γ ` e :q bool

Γ ` not e :un bool

Note that the expression e can be either linear or unrestricted.

(b) Suppose we extended the language with a conjunction operator, e1 and e2. Intuitively, e1 and e2 both
need to have boolean type, and the expression evaluates to the conjunction of the booleans. The
boolean value that is the result of the conjunction is unrestricted (i.e., it is not linear). Write a typing
rule for the conjunction operator.

Answer:

Γ1 ` e1 :q bool Γ2 ` e2 :q′ bool

Γ ` e1 and e2 :un bool
Γ = Γ1 ◦ Γ2

Note that the sub expressions can be either linear or unrestricted, and they do not need to be the same. Note that
we need to split the context Γ so that linear variables in Γ are appropriately split between the computation of
the subexpressions.

(c) Let context Γ = x : lin (lin bool× un bool) and expression e ≡ splitxas y, z in if y then z else not z.

Is e well-typed for context Γ? That is, does Γ ` e :un bool hold? If so, give the derivation.

Answer: Yes, it is well typed. The linear data structure (i.e., the pair) contains an unrestricted value, but
that is fine. It is the reverse that is a problem, i.e., when an unrestricted data structure contains a linear value.
(Apologies for the tiny font. Zoom in on a PDF viewer to see the details of the derivation.)

T-SPLIT

T-VAR
Γ ` x : lin (lin bool × un bool)

T-IF

T-VAR
y : lin bool, z :un bool ` y : lin bool

T-VAR
z :un bool ` z :un bool

T-NOT

T-VAR
z :un bool ` z :un bool

z :un bool ` not z :un bool

y : lin bool, z :un bool ` if y then z else not z :un bool

Γ ` e :un bool

Note how the context y : lin bool, z : un bool is split into y : lin bool, z : un bool (which is used to type check
the the conditional expression y) and the context z : un bool (which is used to check the two branches). The
linear resource y : lin bool goes into only one of the contexts, whereas the unrestricted resource z :un bool goes
into both.

Sub-structural type systems; Algebraic structures
Section and Practice Problems

(d) Consider the execution of the following (well-typed) expression, starting from the empty store. What
does the final store look like? (In particular, recall that locations containing linear values are removed
once the linear value is used.)

(lin λx : lin (un bool× un bool). splitxas y, z in y) (lin (un false,un true))

Answer: As the program executes, it creates locations for each value. Let’s suppose that these are the locations
created for each value:

`1 7→ lin λx : lin (un bool× un bool). splitxas y, z in y
`2 7→ un false
`3 7→ un true
`4 7→ lin (`2, `3)

As each linear value is used, it is removed from the store. The type system ensures that every linear value is
used exactly once, and thus, every linear value is removed from the store by the end of the execution. Thus, the
store at the end of execution contains only locations `2 and `3, the locations that contain unrestricted values.

2 Algebraic structures

(a) Show that the option type, with map defined as in the lecture notes (Lecture 18, Section 2.2) satisfy the
functor laws.

Answer: The functor laws are:

∀f ∈ A→ B, g ∈ B → C. (map f) # (map g) = map (f # g) Distributivity
map (λa :A. a) = (λa :TA. a) Identity

The definition of map for the option type is

map ≡ λf :τ1 → τ2. λa :τ1 option. case a of λx :unit.none|λv :τ1. some (f v)

To show distributivity, we need to show that for all functions f : τ1 → τ2 and g : τ2 → τ3 we have that
λx :τ1 option. (map g) ((map f) x) is equivalent to map (λx :τ1. g (f x))

Recall that # indicates function composition. So the function f # g can can be expressed as λx : τ1. g (f x), and
the function (map f) # (map g) can be expressed as λx :τ1 option. (map g) ((map f) x).

λx :τ1 option. (map g) ((map f) x)
= λx :τ1 option. (map g) ((λa :τ1 option. case a of λy :unit. none|λv :τ1. some (f v)) x) expand map f
= λx :τ1 option. (map g) (case x of λy :unit. none|λv :τ1. some (f v)) by β-equivalence
= λx :τ1 option. (λb :τ2 option. case b of λz :unit. none|λw :τ2. some (g w))

(case x of λy :unit. none|λv :τ1. some (f v)) expand map g
= λx :τ1 option. let b = case x of λy :unit. none|λv :τ1. some (f v) in

case b of λz :unit. none|λw :τ2. some (g w) rewrite as let expression
= λx :τ1 option. case x of λy :unit. none|λv :τ1. some (g (f v)) simplifying nested cases
= λx :τ1 option. case x of λt :unit. none|λv :τ1. some ((λy :τ1. g (f y)) v)

= map (λy :τ1. g (f y)) un-expanding map (λy :τ1. g (f y))

Page 2 of 3

Sub-structural type systems; Algebraic structures
Section and Practice Problems

To show identity, we need to show that map λa :τ. a is equivalent to λa :τ option. a.

map λa :τ. a

= λb :τ option. case b of λx :unit.none|λv :τ. some ((λa :τ. a) v) expand map (λa :τ. a)

= λb :τ option. case b of λx :unit.none|λv :τ. some v by β-equivalence
= λb :τ option. b

(b) Consider the list type, τ list. Define functions return and bind for the list monad that satisfy the monad
laws. Check that they satisfy the monad laws.

Answer: We define return and bind so that they represent a set of possible values that could be produced by a
computation. That is, we use lists to represent the possible values of a nondeterministic computation. There are
other ways to define return and bind on lists, for example, as a stream of results produced by a computation.

Here return will take a value of type τ and return a list that contains the value as its only element. bind will
take a list of τ , take a function f from τ to lists of τ ′, and apply f to every element of the list (using the function
map, defined in class), to get a list of lists of τ ′. We then use a utility function flatten to flatten the list of lists
of τ ′ to a list of τ ′. (In the definition of flatten, a acts as an accumulator.)

return , λx :τ. x :: []

bind , λxs :τ list. λf :τ → τ ′ list. flatten (map f xs)

flatten , let fl = µf :τ ′ list→ (τ ′ list) list→ τ ′ list.
λa :τ ′ list. λx : (τ ′ list) list. if isempty? x then a else f (append a (head x)) (tail x) in

fl []

3 Haskell

(a) Install the Haskell Platform, via https://www.haskell.org/platform/.

(b) Get familiar with Haskell. Take a look at http://www.seas.harvard.edu/courses/cs152/
2019sp/resources.html for some links to tutorials.

In particular, get comfortable doing functional programming in Haskell. Write the factorial function.
Write the append function for lists.

(c) Get comfortable using monads, and the bind syntax. Try doing the exercises at https://wiki.
haskell.org/All_About_Monads#Exercises (which will require you to read the previous sec-
tions to understand do notation, and their previous examples).

(d) Also, look at the file http://www.seas.harvard.edu/courses/cs152/2018sp/sections/
haskell-examples.hs, which includes some example Haskell code (that will likely be covered in
Section).

Page 3 of 3

https://www.haskell.org/platform/
http://www.seas.harvard.edu/courses/cs152/2019sp/resources.html
http://www.seas.harvard.edu/courses/cs152/2019sp/resources.html
https://wiki.haskell.org/All_About_Monads#Exercises
https://wiki.haskell.org/All_About_Monads#Exercises
http://www.seas.harvard.edu/courses/cs152/2018sp/sections/haskell-examples.hs
http://www.seas.harvard.edu/courses/cs152/2018sp/sections/haskell-examples.hs

	Sub-structural type systems
	Algebraic structures
	Haskell

