
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

Section 11

1 Environment Semantics

For Homework 5, the monadic interpreter you will be using uses environment semantics, that is, the oper-
ational semantics of the language uses a map from variables to values instead of performing substitution.
This is a quick primer on environment semantics.

An environment ρmaps variables to values. We define a large-step operational semantics for the lambda
calculus using an environment semantics. A configuration is a pair 〈e, ρ〉 where expression e is the expres-
sion to compute and ρ is an environment. Intuitively, we will always ensure that any free variables in e are
mapped to values by environment ρ.

The evaluation of functions deserves special mention. Configuration 〈λx. e, ρ〉 is a function λx. e, defined
in environment ρ, and evaluates to the closure (λx. e, ρ). A closure consists of code along with values for all
free variables that appear in the code.

The syntax for the language is given below. Note that closures are included as possible values and ex-
pressions, and that a function λx. e is not a value (since we use closures to represent the result of evaluating
a function definition).

e ::= x | n | e1 + e2 | λx. e | e1 e2 | (λx. e, ρ)

v ::= n | (λx. e, ρ)

Note than when we apply a function, we evaluate the function body using the environment from the
closure (i.e., the lexical environment, ρlex), as opposed to the environment in use at the function application
(the dynamic environment).

〈x, ρ〉 ⇓ ρ(x) 〈n, ρ〉 ⇓ n
〈e1, ρ〉 ⇓ n1 〈e2, ρ〉 ⇓ n2

〈e1 + e2, ρ〉 ⇓ n
n = n1 + n2

〈λx. e, ρ〉 ⇓ (λx. e, ρ)

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρlex[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

For convenience, we define a rule for let expressions.

〈e1, ρ〉 ⇓ v1 〈e2, ρ[x 7→ v1]〉 ⇓ v2
〈let x = e1 in e2, ρ〉 ⇓ v2

(a) Evaluate the program let f = (let a = 5 in λx. a+ x) in f 6. Note the closure that f is bound to.

(b) Suppose we replaced the rule for application with the following rule:

〈e1, ρ〉 ⇓ (λx. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρ[x 7→ v2]〉 ⇓ v
〈e1 e2, ρ〉 ⇓ v

That is, we use the dynamic environment to evaluate the function body instead of the lexical environ-
ment.

What would happen if you evaluated the program let f = (let a = 5 in λx. a + x) in f 6 with this
modified semantics?

Environment Semantics; Axiomatic Semantics; Dependent Types
Section and Practice Problems

2 Axiomatic semantics

(a) Consider the program

c ≡ bar := foo; while foo > 0 do (bar := bar + 1; foo := foo− 1).

Write a Hoare triple {P} c {Q} that expresses that the final value of bar is two times the initial value
of foo.

(b) Prove the following Hoare triples. That is, using the inference rules from Section 1.3 of Lecture 19,
find proof trees with the appropriate conclusions.

(i) ` {baz = 25} baz := baz + 17 {baz = 42}

(ii) ` {true} baz := 22; quux := 20 {baz + quux = 42}

(iii) ` {baz + quux = 42} baz := baz− 5; quux := quux + 5 {baz + quux = 42}

(iv) ` {true} if y = 0 then z := 2 else z := y × y {z > 0}

(v) ` {true} y := 10; z := 0; while y > 0 do z := z + y {z = 55}

(vi) ` {true} y := 10; z := 0; while y > 0 do (z := z + y; y := y − 1) {z = 55}

3 Dependent Types

(a) Assume that boolvec has kind (x :nat)⇒ Type and init has type (n : nat)→ bool→ boolvec n).
Show that the expression init 5 true has type boolvec 5,
That is, prove

Γ ` init 5 true :boolvec 5

where
Γ = boolvec :: (x :nat)⇒ Type, init : (n : nat)→ bool→ boolvec n.

(b) Show that the types boolvec (35 + 7) and boolvec ((λy :nat. y) 42) are equivalent.
That is, prove that

Γ ` boolvec (35 + 7) ≡ boolvec ((λy :nat. y) 42) ::Type

where
Γ = boolvec :: (x :nat)⇒ Type.

(c) Suppose we had a function double that takes a boolvec and returns a boolvec that is twice the length.
Write an appropriate type for double. (Note that you will need make sure that the type of the boolvec
argument is well formed! Hint: take a look at the type of join, mentioned in the Lecture 20 notes, for
inspiration.)

4 Coq and Dafny (Optional!)

Note that for this course we do not expect you to be deeply familiar with Dafny or Coq. So this section
question is for those that are interested in finding out more about these tools.

You can play around with Dafny online at https://rise4fun.com/dafny. A tutorial (on which the
class demo was based) is available at https://rise4fun.com/Dafny/tutorial/Guide.

The Coq website is https://coq.inria.fr/. The easiest way to install Coq is via opam, OCaml’s
package manager. See https://coq.inria.fr/opam/www/using.html. In lecture, Prof. Chong was
using Proof General (an extension to Emacs) to interact with Coq: https://proofgeneral.github.
io/.

The Software Foundations series (https://softwarefoundations.cis.upenn.edu/) is a programming-
languages oriented introduction to using Coq.

Page 2 of 2

https://rise4fun.com/dafny
https://rise4fun.com/Dafny/tutorial/Guide
https://coq.inria.fr/
https://coq.inria.fr/opam/www/using.html
https://proofgeneral.github.io/
https://proofgeneral.github.io/
https://softwarefoundations.cis.upenn.edu/

	Environment Semantics
	Axiomatic semantics
	Dependent Types
	Coq and Dafny (Optional!)

