
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Logic Programming; Dynamic Types
Section and Practice Problems

Section 12

1 Logic Programming

To try playing around with Prolog, go to http://www.swi-prolog.org/. You will be able to use Prolog
online at https://swish.swi-prolog.org/.

To try playing around with Datalog, you can go to either http://abcdatalog.seas.harvard.
edu/ to download a Java-based Datalog implementation, or you can go to https://datalog.db.in.
tum.de/ to use Datalog online.

Although you can use the tools above to get the answers to the section problems below very easily, work
out the answers by hand (to make sure you understand the semantics of Prolog and Datalog), and then you
can check your answers by using the tools to execute the programs.

(a) Consider the following Prolog program (where [] is a constant representing the empty list, [t] is short-
hand for cons(t, []) and [t1, t2|t3] is shorthand for cons(t1, cons(t2, t3)).

foo([], []).

foo([X], [X]).

foo([X,Y |S], [Y,X|T]) :- foo(S, T).

For each of the following queries, compute the substitutions that Prolog will generate, if any. (Note
that there is a difference between an empty substitution, and no substitution.) If the query evaluation
will not terminate, explain why.

• foo([a, b], X).

• foo([a, b, c], X).

• foo([a, b], [a, b])

• foo(X, [a])

• foo(X,Y).

Answer: Intuitively, foo(S, T) holds for two lists S and T if they are the same length, and for all i, the 2ith
and 2i+ 1th elements of S are equal, respectively, to the 2i+ 1th and 2ith elements of T .

• foo([a, b], X).

X = [b,a]

• foo([a, b, c], X).

X = [b,a,c]

• foo([a, b], [a, b])

No substitutions returned

• foo(X, [a])

X = [a]

http://www.swi-prolog.org/
https://swish.swi-prolog.org/
http://abcdatalog.seas.harvard.edu/
http://abcdatalog.seas.harvard.edu/
https://datalog.db.in.tum.de/
https://datalog.db.in.tum.de/

Logic Programming; Dynamic Types
Section and Practice Problems

• foo(X,Y).

X = [], Y = []

X = [A, B], Y = [B, A]

X = [A, B, C], Y = [B, A, C]

X = [A, B, C, D], Y = [B, A, D, C]

X = [A, B, C, D, E], Y = [B, A, D, C, E]

X = [A, B, C, D, E, F], Y = [B, A, D, C, F, E]

...
The evaluation of the query never terminates.

(b) Consider the following Datalog program.

bar(a, b, c).

bar(X,Y, Z) :- bar(Y,X,Z).

bar(X,Y, Z) :- bar(Z, Y,X), quux(X,Z).

quux(b, c).

quux(c, d).

quux(X,Y) :- quux(Y,X).

quux(X,Z) :- quux(X,Y), quux(Y,Z).

Find all solutions to the query bar(X,Y, Z).

Answer: We start by the set of facts that are known, S0, and then given Si we produce Si+1 by unifying the
horn clauses with the known facts to derive new facts, and repeat until we reach a fixed point.

S0 = {bar(a, b, c)., quux(b, c)., quux(c, d).}
S1 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).}
S2 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,

bar(c, a, b)., quux(d, b)., quux(b, b).quux(c, c).}
S3 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,

bar(c, a, b)., quux(d, b)., quux(b, b).quux(c, c)., bar(a, c, b).}
S4 = {bar(a, b, c)., quux(b, c)., quux(c, d)., bar(b, a, c)., quux(c, b)., quux(d, c)., quux(b, d).,

bar(c, a, b)., quux(d, b)., quux(b, b).quux(c, c)., bar(a, c, b).}

Since S3 and S4 are the same (i.e., applying the rules to S3 doesn’t derive any new facts) we have a fixed point.
So all solutions to the query bar(X,Y, Z)? are:

bar(a, b, c).

bar(b, a, c).

bar(c, a, b).

bar(a, c, b).

(c) Suppose that we represent a directed graph using the predicates edge(X,Y) to indicate that there is

Page 2 of 3

Logic Programming; Dynamic Types
Section and Practice Problems

an edge from node X to node Y . For example, the following graph is represented by the following
facts:

a b c

d

node(a).

node(b).

node(c).

node(d).

edge(a, b).

edge(b, c).

edge(c, d).

edge(d, b).

(i) Write a Datalog program that computes reachable(X,Y), where reachable(X,Y) holds if there is
a path (of zero or more edges) from X to Y .

Answer:

reachable(X,X) :- node(X).

reachable(X,Y) :- edge(X,Z), reachable(Z, Y).

Note that we can’t just use the clause reachable(X,X)., as that would not bind variable X in the body of
clause, which violates the requirements of Datalog. That is, X is reachable from itself only if X is a node.

(ii) Write a Datalog program that computes sameSCC(X,Y), where sameSCC(X,Y) holds if nodes X
and node Y are in the same strongly connected component. (Hint: use the predicate reachable.)

Answer: Two nodes a and b are in the same strongly connected component if and only if there is a path
from a to b, and a path from b to a.

sameSCC(X,Y) :- reachable(X,Y), reachable(Y,X).

For our example graph above, node a is in its own strongly connected component, but nodes b, c, and d
are in the same SCC. So the result of the query sameSCC(X,Y)? is the following:

sameSCC(a, a)
sameSCC(b, b)
sameSCC(b, c)
sameSCC(b, d)
sameSCC(c, b)
sameSCC(c, c)
sameSCC(c, d)
sameSCC(d, b)
sameSCC(d, c)
sameSCC(d, d)

Page 3 of 3

	Logic Programming

