
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Denotational semantics

Lecture 6 Thursday, February 9, 2023

1 Denotational semantics

We have seen two operational models for programming languages: small-step and large-step. We now
consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical function
that expresses what the program computes. We can think of a program c as a function from stores to stores:
given an an initial store, the program produces a final store. For example, the program foo := bar + 1 can
be thought of as a function that when given an input store σ, produces a final store σ′ that is identical to σ
except that it maps foo to the integer σ(bar) + 1; that is, σ′ = σ[foo 7→ σ(bar) + 1].

We are going to model programs as functions from input stores to output stores. As opposed to op-
erational models, which tell us how programs execute, the denotational model shows us what programs
compute.

For a program c (a piece of syntax), we write C[[c]] for the denotation of c, that is, the mathematical function
that c represents:

C[[c]] : Store ⇀ Store.

Note that C[[c]] is actually a partial function (as opposed to a total function), because the program may
not terminate for certain input stores; C[[c]] is not defined for those inputs, since they have no corresponding
output stores.

We write C[[c]]σ for the result of applying the function C[[c]] to the store σ. That is, if f is the function C[[c]],
then we write C[[c]]σ to mean the same thing as f(σ).

We must also model expressions as functions, this time from stores to the values they represent. We will
write A[[a]] for the denotation of arithmetic expression a, and B[[b]] for the denotation of boolean expression
b. Note that A[[a]] and B[[b]] are total functions.

A[[a]] : Store → Int
B[[b]] : Store → {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
express (partial) functions as sets of pairs. More precisely, we will represent a partial map f : A ⇀ B as a
set of pairs F = {(a, b) | a ∈ A and b = f(a) ∈ B} such that, for each a ∈ A, there is at most one pair of the
form (a,) in the set. Hence (a, b) ∈ F is the same as b = f(a).

We can now define denotations for IMP. We start with the denotations of expressions:

A[[n]] = {(σ, n)}
A[[x]] = {(σ, σ(x))}

A[[a1 + a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 + n2}
A[[a1 × a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 × n2}

B[[true]] = {(σ, true)}
B[[false]] = {(σ, false)}

B[[a1 < a2]] = {(σ, true) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 < n2} ∪
{(σ, false) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 ≥ n2}

Lecture 6 Denotational semantics

The denotations for commands are as follows:

C[[skip]] = {(σ, σ)}
C[[x := a]] = {(σ, σ[x 7→ n]) | (σ, n) ∈ A[[a]]}
C[[c1; c2]] = {(σ, σ′) | ∃σ′′. ((σ, σ′′) ∈ C[[c1]] ∧ (σ′′, σ′) ∈ C[[c2]])}

Note that C[[c1; c2]] = C[[c2]] ◦ C[[c1]], where ◦ is the composition of relations. (Composition of relations is
defined as follows: if R1 ⊆ A×B and R2 ⊆ B×C then R2 ◦R1 ⊆ A×C is R2 ◦R1 = {(a, c) | ∃b ∈ B. (a, b) ∈
R1 ∧ (b, c) ∈ R2}.) If C[[c1]] and C[[c2]] are total functions, then ◦ is function composition.

C[[if b then c1 else c2]] = {(σ, σ′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c1]]} ∪
{(σ, σ′) | (σ, false) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c2]]}

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]])}

But now we’ve got a problem: the last “definition” is not really a definition, it expresses C[[while b do c]]
in terms of itself! It is not a definition, but a recursive equation. What we want is the solution to this
equation, i.e., we want to find a function f , such that f satisfies the following equation, and we will take
the semantics of a while loop to be that function f .

f = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f)}

1.1 Fixed points

We gave a recursive equation that the function C[[while b do c]] must satisfy.
To understand some of the issues involved, let’s consider a simpler example. Consider the following

equation for a function f : N → N.

f(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise
(1)

This is not a definition for f , but rather an equation that we want f to satisfy. What function, or func-
tions, satisfy this equation for f? The only solution to this equation is the function f(x) = x2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions g : N → N that
satisfy the recursive equation g(x) = g(x)+1), or multiple solutions (e.g., find two functions g : R → R that
satisfy g(x) = 4g(12x)).

We can compute solutions to such equations by building successive approximations. Each approxima-
tion is closer and closer to the solution. To solve the recursive equation for f , we start with the partial
function f0 = ∅ (i.e., f0 is the empty relation; it is a partial function with the empty set for its domain). We
compute successive approximations using the recursive equation.

Page 2 of 5

Lecture 6 Denotational semantics

f0 = ∅

f1 =

{
0 if x = 0

f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0

f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0

f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

This sequence of successive approximations fi gradually builds the function f(x) = x2.
We can model this process of successive approximations using a higher-order function G that take one

approximation fk and returns the next approximation fk+1:

G : (N ⇀ N) → (N ⇀ N)
G(f) = f ′

where

f ′(x) =

{
0 if x = 0

f(x− 1) + 2x− 1 otherwise

A solution to the recursive equation (1) is a function f∗ such that f∗ = G(f∗). In general, given a
function G : A → A, we have that a ∈ A is a fixed point of G if G(a) = a. We also write a = fix(G) to indicate
that a is a fixed point of G.

So the solution to the recursive equation (1) is a fixed-point of the higher-order function G. We can
compute this fixed point iteratively, starting with f0 = ∅ and at each iteration computing fk+1 = G(fk). The
fixed point is the limit of this process:

f∗ = fix(G)

= f0 ∪ f1 ∪ f2 ∪ f3 ∪ . . .

= ∅ ∪G(∅) ∪G(G(∅)) ∪G(G(G(∅))) ∪ . . .

=
⋃
i≥0

Gi(∅)

1.2 Fixed-point semantics for loops

Returning to our original problem: we want to find C[[while b do c]], the (partial) function from stores to
stores that is the denotation of the loop while b do c. We will do this by expressing C[[while b do c]] as the
fixed point of a higher-order function Gb,c.

Gb,c : (Store ⇀ Store) → (Store ⇀ Store)
Gb,c(f) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪

{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f)}

Page 3 of 5

Lecture 6 Denotational semantics

Compare the definition of our higher-order function Gb,c to our recursive equation for C[[while b do c]].
The higher-order function Gb,c takes in the partial function f , and acts like one iteration of the while

loop, except that, instead of invoking itself when it needs to go around the loop again, it instead calls f .
We can now define the semantics of the while loop:

C[[while b do c]] =
⋃
i≥0

Gb,c
i(∅)

= ∅ ∪Gb,c(∅) ∪Gb,c(Gb,c(∅)) ∪Gb,c(Gb,c(Gb,c(∅))) ∪ . . .

= fix(Gb,c)

Let’s consider an example: while foo < bar do foo := foo+ 1. Here b = foo < bar and c = foo := foo+ 1.

Gb,c(∅) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ ∅)}

= {(σ, σ) | σ(foo) ≥ σ(bar)}

Gb,c
2(∅) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪

{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ Gb,c(∅))}
= {(σ, σ) | σ(foo) ≥ σ(bar)} ∪

{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) < σ(bar) ∧ σ(foo) + 1 ≥ σ(bar)}

But if σ(foo) < σ(bar) ∧ σ(foo) + 1 ≥ σ(bar) then σ(foo) + 1 = σ(bar), so we can simplify further:

= {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) + 1 = σ(bar)}

Gb,c
3(∅) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪

{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ Gb,c
2(∅))}

= {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) + 1 = σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 2]) | σ(foo) + 2 = σ(bar)}

Gb,c
4(∅) = {(σ, σ) | σ(foo) ≥ σ(bar)} ∪

{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) + 1 = σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 2]) | σ(foo) + 2 = σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 3]) | σ(foo) + 3 = σ(bar)}

If we take the union of all Gb,c
i(∅), we get the expected semantics of the loop.

C[[while foo < bar do foo := foo+ 1]] = {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + n]) | σ(foo) + n = σ(bar) ∧ n ≥ 1}

The last equality is a condensation of the union. Now we can rewrite this in the closed form:

C[[while foo < bar do foo := foo+ 1]] = {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + n]) | n = σ(bar)− σ(foo) ∧ n ≥ 1}

Page 4 of 5

Lecture 6 Denotational semantics

2 Going deeper: introduction to domain theory

As we saw denotational semantics is an alternative to operational semantics, where we go straight to the
mathematics (the what) instead of going through the operations (the how). The advantage is that we can
discuss the meaning of programs directly as mathematical objects. As an example, we can use mathematical
equality to compare denotations.

In order to answer questions such as “When does the fixed point exist?”, “Is it unique if it exists?”, it is
helpful to introduce some basic definitions from domain theory.

A partial order is a complete partial order if it has a least upper bound
⊔

n∈ω dn in D of any ω-chain (infinite
increasing chain) d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . of elements of D. This means that if we take any chain in D,
there is an element d of D that is greater than any other element in the chain, and if another element c is
greater than any other element in the chain, then d ⊑ c. Some examples of cpo’s are

1. A discrete cpo is any set ordered by the identity relation. Any chain is of the form a ⊑ a, thus any
chain has a least upper bound a.

2. The powerset P(X) of any set X , ordered by ⊆, or by ⊇, forms a cpo.

3. The set of partial functions X ⇀ Y ordered by inclusion, between sets X and Y , is a cpo.

4. Extending the non-negative integers ω by ∞ and ordering them in a chain

0 ⊑ 1 ⊑ . . . ⊑ n ⊑ . . .∞

yields a cpo, called Ω.

A function f : D → E between cpo’s D and E is monotonic iff

∀d, d′ ∈ D.d ⊑ d′ −→ f(d) ⊑ f(d′).

Such a function is continuous iff it is monotonic and for all chains d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ . . . in D we have⊔
n∈ω

f(dn) = f(
⊔
n∈ω

dn).

A cpo with bottom is a cpo which has a least element ⊥, that is an element which is less than every other
element.

Theorem 1 (Fixed Point theorem). Let f : D → D be a continuous function on D a cpo with bottom ⊥. Define

fix(f) =
⊔
n∈ω

fn(⊥).

Then f(fix(f)) = fix(f) and, if f(d) ⊑ d then fix(f) ⊑ d. Consequently fix(f) is the least fixed point of f .

This theorem helps us find the fixed points 0, 1 of the squaring function f : ω → ω, f(n) = n2. We
can extend f to a function on a cpo; set h : Ω → Ω defined by h(n) = n2 on the integers and h(∞) = ∞.
As an exercise, try proving that this function is monotonic and continuous. The bottom ⊥ of Ω is 0, and
we have that 0 =

⊔
n∈ω hn(⊥) is a fixed point of h, and of f . Moreover, it is the least fixed point. This

makes sense because 0 ⊑ 1 ⊑ ∞. If we take Ω′ to be all the elements of Ω except 0, with the same ordering,
then 1 becomes the bottom, and we get that 1 =

⊔
n∈Ω hn(1) is a fixed point. Similarly, if we take Ω′′ to

be all elements of Ω except 0 and 1, with the same ordering, then 2 becomes the bottom, and we see that
∞ =

⊔
n∈ω fn(2) is a fixed point. (Note that it’s the least fixed point among 2, 3, 4 . . . ∈ Ω′′, but not among

the elements of Ω.)
In denotational semantics, we take the union all the Gi’s to get a fixed point of higher order function G

precisely due to this theorem, where we set d0 = G0, d1 = G1, d2 = G2, and so on. In other words, our cpo
consists of the elements Gi, and an additional element, their union. The union is then both the least fixed
point (due to the theorem) and the unique fixed point (due to the fact any other candidate for a fixed point
fails to be greater than the union).

Page 5 of 5

