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Lecture 10 Thursday, February 23, 2023

1 References

We introduce constructs for creating, reading, and updating memory locations, also called references. The
resulting language is still a functional language (since functions are first-class values), but expressions can
have side-effects, that is, they can modify state.

The syntax is defined as follows.

e ::= x | λx. e | e0 e1 | ref e | !e | e1 := e2 | ℓ
v ::= λx. e | ℓ

Expression ref e creates a new memory location (like a malloc), and sets the initial contents of the location
to (the result of) e. The expression ref e itself evaluates to a memory location ℓ. Think of a location as being
like a pointer to a memory address. The expression !e assumes that e evaluates to a memory location, and
!e evaluates to the current contents of the memory location. Expression e1 := e2 assumes that e1 evaluates
to a memory location ℓ, and updates the contents of ℓ with (the result of) e2. Locations ℓ are not intended to
be used directly by a programmer: they are not part of the surface syntax of the language, the syntax that a
programmer would write. They are introduced only by the operational semantics.

We define a small-step CBV operational semantics. We use configurations ⟨e, σ⟩, where e is an expres-
sion, and σ is a map from locations to values.

E ::= [·] | E e | v E | ref E | !E | E := e | v := E

⟨e, σ⟩ −→ ⟨e′, σ′⟩
⟨E[e], σ⟩ −→ ⟨E[e′], σ′⟩

β-REDUCTION
⟨(λx. e) v, σ⟩ −→ ⟨e{v/x}, σ⟩

ALLOC
⟨ref v, σ⟩ −→ ⟨ℓ, σ[ℓ 7→ v]⟩

ℓ ̸∈ dom(σ)

DEREF
⟨!ℓ, σ⟩ −→ ⟨v, σ⟩

σ(ℓ) = v ASSIGN
⟨ℓ := v, σ⟩ −→ ⟨v, σ[ℓ 7→ v]⟩

References do not add any expressive power to the lambda calculus: it is possible to translate lambda
calculus with references to the pure lambda calculus. Intuitively, this is achieved by explicitly representing
the store, and threading the store through the evaluation of the program. The details are left as an exercise.

2 Continuations

So far we have seen a number of language features that extend lambda calculus, and have translated many
of these into the pure lambda calculus, using a direct semantic translation. That is, the control structure of
the source language translated into the corresponding control structure in the target language:

T [[λx. e]] = λx. T [[e]]

T [[e1 e2]] = T [[e1]] T [[e2]]

This style of translation works well when the source language is similar to the target language. However,
when the control structures of the source and target languages differ considerable, it doesn’t work as well.
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In this lecture, we’ll learn about continuations and continuation-passing style. These can be used to define
the semantics of control-flow constructs such as exceptions.

Continuations are a programming technique that may be used directly by a programmer, or used in
program transformations by a compiler.

Intuitively, a continuation represents “the rest of the program.” Consider the program

if foo < 10 then 32 + 6 else 7 + bar

and consider the evaluation of the expression foo < 10. When we finish evaluating this subexpression, we
will evaluate the if statement, and then evaluate the appropriate branch. The continuation of the subexpres-
sion foo < 10 is the rest of the computation that will occur after we evaluate the subexpression. We can
write this continuation as a function that takes the result of the subexpression:

(λy. if y then 32 + 6 else 7 + bar) (foo < 10)

The evaluation order and result of this program will be the same as the original expression; the differ-
ence is that we extracted the continuation of the subexpression in to a function.

The nice thing about continuations is that it makes the control explicit, and this is especially useful in
the case of functional programs, where control is not explicit otherwise. In fact, we can rewrite a program
to make continuations more explicit.

Let’s consider another program, and convert it so that continuations are explicit. Let’s think about the
following applied lambda calculus program.

(λx. x) ((1 + 2) + 3) + 4

We’ll start by defining a continuation for the outermost evaluation context, which takes a value, and applies
the identity function to it.

k0 = λv. (λx. x) v

The evaluation context that is evaluated next-to-last takes a value, adds 4 to it, and then passes the result to
k0.

k1 = λa. k0 (a+ 4)

Likewise, for the next evaluation contexts.

k2 = λb. k1 (b+ 3)

k3 = λc. k2 (c+ 2)

The program itself is now equivalent to k3 1. Since let x = e in e′ is just syntactic sugar for (λx. e′) e, we
can actually rewrite the above as

let c = 1 in
let b = c+ 2 in
let a = b+ 3 in
let v = a+ 4 in
(λx. x) v

This is fairly close to some machine instructions of the form:

set c, 1
add b, c, 2
add a, b, 3
add v, a, 4
call id, v
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Using continuations, functions can be transformed into ”functions that don’t return”—functions that
take, besides the usual arguments, an additional argument representing a continuation. When the function
finishes, it invokes the continuation on its result, instead of returning the result to its caller. Writing func-
tions in this way is usually referred to as Continuation-Passing Style, or CPS for short. For instance, the
CPS version of factorial looks like the following:

FACT cps = Y λf. λn, k. if n = 0 then k 1 else f (n− 1) (λv. k (n ∗ v))

Note that the last thing that code in FACT cps does is call a function (either k or f ), and does not do
anything with the result.

Continuation-Passing Style is an important concept in the compilation of functional languages and is
used as an intermediate compiler representation (it has been used in compilers for Scheme, ML, etc). The
main advantage is that CPS makes the control flow explicit and makes it easier to translate functional code
to machine code where control is explicit (in the form of sequences of machine instructions and jumps). For
instance, a CPS call can be easily translated into a jump to the invoked method, since the invoked function
does not return the control.

2.1 CPS translation

We can translate lambda calculus programs into continuation-passing style. We define a translation func-
tion CPS[[·]], which takes a CBV lambda calculus expression, and translates the expression to a CBV lambda
calculus expression in continuation-passing style.

Let’s consider a translation from lambda calculus with pairs and integers. The syntax of the source
language is as follows.

e ::= x | λx. e | e1 e2 | n | e1 + e2 | (e1, e2) | #1 e | #2 e

The translation CPS[[e]] will produce a function that whose argument is the continuation to which to
pass the result. That is, for all expressions e, the translation is of the form CPS[[e]] = λk. . . . , where k is
a continuation. We will both assume and guarantee that for any expression e, the translation CPS[[e]] =
λk. . . . will apply k to the result of evaluating e.

For convenience, instead of writing
CPS[[e]] = λk. . . .

we write
CPS[[e]]k = . . .

CPS[[n]]k = k n

CPS[[e1 + e2]]k = CPS[[e1]] (λn. CPS[[e2]] (λm. k (n+m))) n is not a free variable of e2

CPS[[(e1, e2)]]k = CPS[[e1]] (λv. CPS[[e2]] (λw. k (v, w))) v is not a free variable of e2
CPS[[#1 e]]k = CPS[[e]] (λv. k (#1 v))

CPS[[#2 e]]k = CPS[[e]] (λv. k (#2 v))

CPS[[x]]k = k x

CPS[[λx. e]]k = k (λx, k′. CPS[[e]]k′) k′ is not a free variable of e
CPS[[e1 e2]]k = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k)) f is not a free variable of e2

We translate a function λx. e to a function that takes an additional argument k′, which is the continuation
after the function application. That is, k′ is the continuation to which we hand the result of evaluating the
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function body. In function application, we see that in addition to the actual argument, we also give the
continuation as the additional argument.

Let’s see an example translation and execution...

CPS[[(λa. a+ 6) 7]]ID = CPS[[(λa. a+ 6)]] (λf. CPS[[7]] (λv. f v ID))

= (λf. CPS[[7]] (λv. f v ID)) (λa, k′. CPS[[a+ 6]]k′)

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a+ 6]]k′)

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a]] (λn. CPS[[6]] (λm. k′ (m+ n))))

= (λf. (λv. f v ID) 7) (λa, k′. CPS[[a]] (λn. (λm. k′ (m+ n)) 6))

= (λf. (λv. f v ID) 7) (λa, k′. (λn. (λm. k′ (m+ n)) 6) a)

−→ (λv. (λa, k′. (λn. (λm. k′ (m+ n)) 6) a) v ID) 7

−→ (λa, k′. (λn. (λm. k′ (m+ n)) 6) a) 7 ID

−→ (λn. (λm. ID (m+ n)) 6) 7

−→ (λm. ID (m+ 7)) 6

−→ ID (6 + 7)

−→ ID 13

−→ 13
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