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1 Dependent types

Suppose we introduce immutable vectors of booleans to the lambda calculus. A vector ⟨v1, . . . , vn⟩ is of
length n, and each vi is a boolean value. Let’s add primitive function init as a way to construct vectors. It
will take a natural number and a value as arguments and produce a vector: init k v will evaluate to ⟨v, . . . , v⟩,
a vector of length k where each element has the value v.

Similarly, we’ll add a primitive function index to access an element of the vector: index ⟨v1, . . . , vn⟩ i will
evaluate to vi+1, provided 0 ≤ i < n. (We could add a way to produce vectors that contain different values,
but for our purposes just init and index are sufficient.)

We’ll also include natural numbers n, pairs, and the unit value in the language. The syntax of expres-
sions and values for the extended language is the following.

e ::= x | λx. e | e1 e2 | n | (e1, e2) | () | true | false | init | index
v ::= λx. e | n | ⟨v1, . . . , vn⟩ | (v1, v2) | () | true | false

Evaluation rules for the new constructs are defined as follows.

init k v −→ ⟨v1, . . . , vk⟩
∀i ∈ 1..k. vi = v

index ⟨v1, . . . , vk⟩ i −→ vi+1

We could run in to some problems when executing programs in our new language. We could try to
apply the new primitive functions to values of the wrong type (e.g., init 42 42). But we might try to access a
vector with an inappropriate index, for example index ⟨false, false, true⟩ 7.

The first problem we can avoid by using type systems like we have seen previously: give vectors a type,
say boolvec, and give the primitive function init the type nat → bool → boolvec (where nat is the type of
natural numbers). But this approach does not stop us from having incorrect indices, as it would still allow
the expression index ⟨false, false, true⟩ 7.

1.1 First attempt at a type system

To address these problems, we are going to use a dependent type for boolean vectors, where the length of the
vector is part of the type of a vector. The type boolvec e represents boolean vectors of length e, where e is
a natural number expression.

The signature for init becomes (n : nat) → bool → boolvec n. That is, init takes two arguments, a
natural number n, and a boolean, and produces a boolean vector of length n, a boolvec n.

With this new type, we define typing rules for vectors are the following.

∀i ∈ 1..n. Γ ⊢ vi :bool
Γ ⊢ ⟨v1, . . . , vn⟩ :boolvec n

Γ ⊢ e1 :nat Γ ⊢ e2 :bool
Γ ⊢ init e1 e2 :boolvec e1

Γ ⊢ e1 :boolvec e3 Γ ⊢ e2 :nat
Γ ⊢ index e1 e2 :bool

e2 ≤ e3

The type of a vector of length n is simply boolvec n. The first argument to the primitive function to
create vectors, init, is the length of the new vector, and so the type of init e1 e2 is boolvec e1, a vector with
length e1. The typing rule for index requires that the index e2 is no greater than the length of the vector
being accessed: e2 ≤ e3.

Now, the type boolvec e is very strange! We have at least three problems with this newly proposed
type boolvec e.
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1. In the type for init, (n : nat) → bool → boolvec n, the first argument is somehow bound to the
variable n which occurs in the return type of the function. What does this mean?

2. The type contains an expression e. This could be an arbitrary expression. If e is a literal natural
number, then the type maybe makes sense, for example boolvec 7 is the type of vectors of length 7.
But what do the types boolvec (9 + 1) or boolvec x mean? And what does it mean in the proposed
typing rule for index to have a side condition e1 ≤ e3?

3. The expression e in the type boolvec e should be of type nat. For example, we shouldn’t let someone
write code where e is not of type nat, such as λx :boolvec (). . . . . How do we ensure that e is limited
to expressions of type nat?

1.2 LF

We address some of these problems by considering boolean vectors in the language LF, which stands for
Logical Framework.

We give expressions types to allow us to restrict and reason about the use of expressions. Types can be
thought of as describing sets of expressions. In LF, just as expressions have types, types have kinds. That is,
kinds describe sets of types, and we use kinds to restrict and reason about the use of types.

The syntax of LF is given by the following grammar. Here, we use metavariable K to range over kinds.

Expressions e ::= x | λx :τ. e | e1 e2 | n | e1 + e1 | ⟨v1, . . . , vn⟩ | . . .
Types τ ::= nat | boolvec | bool | unit | τ e | (x :τ1) → τ2

Kinds K ::= Type | (x :τ) ⇒ K

In LF, the literal n has type nat, just as in the simply-typed lambda calculus. Also, the type of a vector
⟨v1, . . . , vn⟩ is boolvec n. However, we will prevent the use of ill-formed types such as boolvec true by
using kinds to restrict how types may be composed. The kind of boolvec will be (x :nat) ⇒ Type: it takes
a natural number and produces a type.

We will have three judgments, one each for expressions, types, and kinds. The form of the judgment for
expressions is Γ ⊢ e :τ , and means that under context Γ, expression e has type τ . We extend contexts so that
they include both the types of program variables (x :τ ) and the kinds of type variables (X ::K).

The form of the judgment for types is Γ ⊢ τ ::K, meaning that under context Γ, type τ has kind K. In
LF, kinds do not have their “types” (i.e., there is no entity that describes sets of kinds), so the judgment for
kinds is of the form Γ ⊢ K ok, which means that under context Γ, kind K is well-formed.

Since types may contain expressions, in order to perform type checking, we may need to evaluate ex-
pressions to determine if two types are equivalent, for example the types boolvec 19 and boolvec (12+7).
Similarly, since kinds may contain types (in the production (x : τ) ⇒ K), we may need to evaluate ex-
pressions when checking kinds. As such, we also define another three relations that describe equivalence
between expressions, types, and kinds, respectively. Relation Γ ⊢ e1 ≡ e2 : τ means that (under context Γ),
expressions e1 and e2 are equivalent (and have type τ ). Relation Γ ⊢ τ1 ≡ τ2 ::K means that (under context
Γ), types τ1 and τ2 are equivalent (and have kind K). Finally, relation Γ ⊢ K1 ≡ K2 means that (under
context Γ), kinds K1 and K2 are equivalent.

Types are similar to what we have seen previously. We have primitive types (nat,bool,boolvec, etc.).
The function type gives the argument type a binder: (x : τ1) → τ2 allows the program variable x to appear
in the type τ2, where x represents the argument given to the expression. We also have type application τ e,
which applies a type to an expression. The key example of this in our system is the application of boolvec
to an expression, such as boolvec 7.

The rules for the judgment Γ ⊢ e :τ are the following.
Γ ⊢ e :τ

Γ ⊢ τ ::K

Γ ⊢ x :τ
x :τ ∈ Γ

Γ ⊢ n :nat
n ∈ N

Γ ⊢ e1 :nat Γ ⊢ e2 :nat
Γ ⊢ e1 + e2 :nat

For all i ∈ 1..n. Γ ⊢ vi :bool
Γ ⊢ ⟨v1, . . . , vn⟩ :boolvec n
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Γ ⊢ τ ::Type Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e : (x :τ) → τ ′
Γ ⊢ e1 : (x :τ

′) → τ Γ ⊢ e2 :τ
′

Γ ⊢ e1 e2 :τ{e2/x}

CONVERSION
Γ ⊢ e :τ ′ Γ ⊢ τ ≡ τ ′ ::Type

Γ ⊢ e :τ

The rule for conversion uses the relation Γ ⊢ τ1 ≡ τ2 ::K that we will define later. We also need rules for
base values, such as (), true, false. We omit these rules.

Note that we need to provide types for our primitive functions init and index. We can simply assume
that these primitive functions are variables that are bound in every context. We will consider types for these
primitive functions later.

The judgment Γ ⊢ τ ::K is given by the following rules and axioms.
Γ ⊢ τ ::K

Γ ⊢ K ok
Γ ⊢ X ::K

X :K ∈ Γ
Γ ⊢ τ ::Type Γ, x :τ ⊢ τ ′ ::Type

Γ ⊢ (x :τ) → τ ′ ::Type

Γ ⊢ τ :: (x :τ ′) ⇒ K Γ ⊢ e :τ ′

Γ ⊢ τ e ::K{e/x}
CONVERSION

Γ ⊢ τ ::K ′ Γ ⊢ K ≡ K ′

Γ ⊢ τ ::K

Note that we can just assume that the primitive types unit, bool, nat, and boolvec, are just type vari-
ables that appear in the context. We assume that the kind of unit, bool, and nat is Type, and that the kind
of boolvec is (n :nat) ⇒ Type, that is, it takes an expression of type nat, and produces a type.

Note also that we restrict the kinds of types used in function type (x :τ) → τ ′: both τ and τ ′ are restricted
to Types, and cannot be arbitrary kinds, such as (x :bool) ⇒ Type. We do this because lambda abstractions
can be thought of as machines that take an expression as input, and produce an expression as output; the
kind of the type of any expression is Type.

The judgment Γ ⊢ K ok simply ensures that variables in kinds are used correctly.
Γ ⊢ K ok

Γ ⊢ Type ok
Γ ⊢ τ ::Type Γ, x :τ ⊢ K ok

Γ ⊢ (x :τ) ⇒ K ok

The equivalence relations ≡ define what it means for expressions, types, and kinds to be equivalent.
In a nutshell, it is if they evaluate to the same value. The question of what equivalences to include in a
dependent type system is a critical one. Many different choices have been studied, leading to very different
results. Clearly we would like to, for example. consider the types boolvec 42 and boolvec (35 + 7) equiv-
alent. But what about if we are in a context where we have variables x and f of type nat and nat → nat,
respectively, where we know that f x = 7? Should we consider the types boolvec (f x) and boolvec 7 to
be equivalent?
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Γ ⊢ e1 ≡ e2 :τ

Γ ⊢ τ1 ≡ τ2 ::Type Γ, x :τ1 ⊢ e1 ≡ e2 :τ

Γ ⊢ λx :τ1. e1 ≡ λx :τ2. e2 : (x :τ1) → τ

Γ ⊢ e1 ≡ e2 : (x :τ) → τ ′ Γ ⊢ e′1 ≡ e′2 :τ

Γ ⊢ e1 e
′
1 ≡ e2 e

′
2 :τ

′{e′1/x}

Γ, x :τ ⊢ e :τ ′ Γ ⊢ e′ :τ

Γ ⊢ (λx :τ. e) e′ ≡ e{e′/x} :τ ′{e′/x}
Γ ⊢ e : (x :τ) → τ ′ x ̸∈ FV (e)

Γ ⊢ (λx :τ. e x) ≡ e : (x :τ) → τ ′

Γ ⊢ e1 ≡ e2 :nat Γ ⊢ e′1 ≡ e′2 :nat
Γ ⊢ e1 + e′1 ≡ e2 + e′2 :nat Γ ⊢ k +m ≡ n :nat

n is the sum of k and m

Γ ⊢ e :τ

Γ ⊢ e ≡ e :τ

Γ ⊢ e1 ≡ e2 :τ

Γ ⊢ e2 ≡ e1 :τ

Γ ⊢ e1 ≡ e2 :τ Γ ⊢ e2 ≡ e3 :τ

Γ ⊢ e1 ≡ e3 :τ

Γ ⊢ τ1 ≡ τ2 ::K

Γ ⊢ τ1 ≡ τ2 ::Type Γ, x :τ1 ⊢ τ ′1 ≡ τ ′2 ::Type
Γ ⊢ (x :τ1) → τ ′1 ≡ (x :τ2) → τ ′2 ::Type

Γ ⊢ τ1 ≡ τ2 :: (x :τ) ⇒ K Γ ⊢ e1 ≡ e2 :τ

Γ ⊢ τ1 e1 ≡ τ2 e2 ::K{e1/x}

Γ ⊢ τ ::K

Γ ⊢ τ ≡ τ ::K

Γ ⊢ τ1 ≡ τ2 ::K

Γ ⊢ τ2 ≡ τ1 ::K

Γ ⊢ τ1 ≡ τ2 ::K Γ ⊢ τ2 ≡ τ3 ::K

Γ ⊢ τ1 ≡ τ3 ::K

Γ ⊢ K1 ≡ K2

Γ ⊢ τ1 ≡ τ2 ::Type Γ, x :τ1 ⊢ K1 ≡ K2

Γ ⊢ (x :τ1) ⇒ K1 ≡ (x :τ2) ⇒ K2

Γ ⊢ K ok
Γ ⊢ K ≡ K

Γ ⊢ K1 ≡ K2

Γ ⊢ K2 ≡ K1

Γ ⊢ K1 ≡ K2 Γ ⊢ K2 ≡ K3

Γ ⊢ K1 ≡ K3

So, what has LF gained us? The use of kinds ensures that we cannot mis-use a type constructor. For
example, it will rule out any program that contains boolvec e where e does not have type nat.

LF also provides us with a clearly defined meaning for binding program variables in types. The type
we gave for init now makes sense: (n : nat) → bool → boolvec n. We can also give precise types to other
interesting functions, such as join, a function that takes two vectors on length n and k respectively, and
combines them to form a vector of length n+ k could be given the following type:

(n : nat) → (k : nat) → boolvec n → boolvec k → boolvec (n+ k)

What about a type for index? That is, how do we ensure that in expression index e1 e2 that if e1 has type
boolvec n, how do we ensure that e2 is a natural number that is less than n? And, suppose we wanted
a primitive function asPairs that takes a vector, and returns a representation of the vector using pairs:
asPairs ⟨v1, . . . , vn⟩ evaluates to (v1, (v2, . . . (vn, ()) . . . )). LF does not provide us with a way to write down
an appropriate type for asPairs.

We can address these remaining issues by considering the calculus of constructions (CoC). The calculus of
constructions is the language behind the proof assistant Coq.
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We have seen functions from expressions to expressions (which are just the standard abstractions, λx. e);
polymorphic lambda calculus gave us functions from types to terms (ΛX. e); dependent types are functions
from expressions to types (e.g., boolvec is a function from expressions of type nat to types). To express the
type of asPairs, we need functions from types to types. That is, the type of asPairs e depends on the type
of e.

In part, the power of Coq comes from viewing dependent types through the Curry-Howard Isomor-
phism, whereby we can equate types with propositions, and expressions with proofs. With dependent
types, expressions can appear in propositions. One of the ways that we can think about that, is that de-
pendent types are allowing us to express properties (predicates) of values that the program manipulates.
That is, one way to consider a dependent type (x :τ1) → τ2 is that it corresponds to universal quantification
in first-order logic: for any value (individual) x of type τ1, proposition τ2 (which mentions x) is true. A
function with type (x :τ1) → τ2 is a proof of this universal quantification, because if you give it any value v
of type τ1, then it will give back a proof that τ2{v/x} holds.

Due to time constraints, we did not get to discuss CoC in detail. If you are interested, an introduction
can be found in Chapter 2 of Advanced Topics in Types and Programming Languages, edited by Benjamin C.
Pierce, MIT Press, 2005.
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