
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

Week 7: Tue Mar 6–Fri Mar 10, 2023

1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 13§1.1).

(a) Write a program that constructs two values of type int + (int → int), one using left injection, and one
using right injection.

Answer:

let a : int + (int → int) = inlint+(int→int) 3 in
inrint+(int→int) λx : int. 3

(b) Write a function that takes a value of type int + (int → int) and if the value is an integer, it adds 7 to
it, and if the value is a function it applies the function to 42.

Answer:

λa : int + (int → int). case a of λy : int. y + 7 | λf : int → int. f 42

(c) Give a typing derivation for the following program.

λp : (unit → int)× (int → int). λx :unit + int. case x of #1 p | #2 p

Answer: For brevity, let e1 ≡ λx : unit + int. case x of #1 p | #2 p and let Γ = {p : (unit → int) × (int →
int), x :unit + int}

T-ABS

T-ABS

T-CASE

T-VAR
Γ ⊢ x :unit + int

T-LPROJ

T-VAR
Γ ⊢ p : (unit → int × int → int)

Γ ⊢ #1 p :unit → int
T-RPROJ

T-VAR
Γ ⊢ p : (unit → int × int → int)

Γ ⊢ #2 p : int → int

Γ ⊢ case x of #1 p | #2 p : int

p : (unit → int) × (int → int) ⊢ λx :unit + int. case x of #1 p | #2 p : (unit + int) → int

⊢ λp : (unit → int) × (int → int). e1 : ((unit → int) × (int → int)) → (unit + int) → int

(d) Write a program that uses the term in part (c) above to produce the value 42.

Answer: We refer to the term in part (c) above as f .

f (λx :unit. 42, λx : int. 41) inlunit+int ()



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

2 Recursion

(a) Use the µx. e expression to write a function that takes a natural number n and returns the sum of
all even natural numbers less than or equal to n. (You can assume you have appropriate integer
comparison operators, and also a modulus operator.)

Answer:
µf. λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ f (n− 2) else f (n− 1)

(b) Try executing your program by applying it to the number 5.

Answer: The program executes correctly and returns 6. For brevity, we will refer to the expression from the answer
above as F .

F 5

−→(λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 5

−→if 5 ≤ 0 then 0 else if (5 mod 2) = 0 then 5 + F (5− 2) else F (5− 1)

−→if false then 0 else if (5 mod 2) = 0 then 5 + F (5− 2) else F (5− 1)

−→if (5 mod 2) = 0 then 5 + F (5− 2) else F (5− 1)

−→if 1 = 0 then 5 + F (5− 2) else F (5− 1)

−→if false then 5 + F (5− 2) else F (5− 1)

−→F (5− 1)

−→(λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) (5− 1)

−→(λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 4

−→if 4 ≤ 0 then 0 else if (4 mod 2) = 0 then 4 + F (4− 2) else F (4− 1)

−→if false then 0 else if (4 mod 2) = 0 then 4 + F (4− 2) else F (4− 1)

−→if (4 mod 2) = 0 then 4 + F (4− 2) else F (4− 1)

−→if 0 = 0 then 4 + F (4− 2) else F (4− 1)

−→if true then 4 + F (4− 2) else F (4− 1)

−→4 + F (4− 2)

−→4 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) (4− 2)

−→4 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 2

−→4 + (if 2 ≤ 0 then 0 else if (2 mod 2) = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if false then 0 else if (2 mod 2) = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if (2 mod 2) = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if 0 = 0 then 2 + F (2− 2) else F (2− 1))

−→4 + (if true then 2 + F (2− 2) else F (2− 1))

−→4 + (2 + F (2− 2))

−→4 + (2 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) (2− 2))

−→4 + (2 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 0)

−→4 + (2 + (λn. if n ≤ 0 then 0 else if (n mod 2) = 0 then n+ F (n− 2) else F (n− 1)) 0)

−→4 + (2 + (if 0 ≤ 0 then 0 else if (0 mod 2) = 0 then 0 + F (0− 2) else F (0− 1)))

−→4 + (2 + (if true then 0 else if (0 mod 2) = 0 then 0 + F (0− 2) else F (0− 1)))

Page 2 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

−→4 + (2 + (0))

−→∗6

(c) Give a typing derivation for the following program. What happens if you execute the program?

µp : (int → int)× (int → int). (λn : int. n+ 1,#1 p)

Answer: For brevity, we write τp for the type (int → int)× (int → int).

T-REC

T-PAIR

T-ABS

T-SUM

T-VAR
p :τp, n : int ⊢ n : int

T-INT
p :τp, n : int ⊢ 1: int

p :τp, n : int ⊢ n + 1: int

p :τp ⊢ λn : int. n + 1: int → int
T-PROJ

T-VAR
p :τp ⊢ p :τp

p :τp ⊢ #1 p : int → int

p :τp ⊢ (λn : int. n + 1,#1 p) :τp

⊢ µp :τp. (λn : int. n + 1,#1 p) :τp

Now, if you actually tried to execute this expression under a Call-By-Value semantics, it would unfold the recursive
expression to (λn : int. n + 1,#1 P ), where P is the recursive expression µp : (int → int) × (int → int). (λn :
int. n + 1,#1 p). While the first element of the pair is a value, the second #2 P is not, and so we would attempt to
evaluate that expression. However, that requires evaluating the expression P ≡ µp : (int → int)× (int → int). (λn :
int. n+ 1,#1 p).

So, under Call-by-Value semantics, the program will not terminate.

3 References

(a) Give a typing derivation for the following program.

let a : int ref = ref 4 in
let b : (int → int) ref = ref λx : int. x+ 38 in
!b !a

Answer: For brevity, we will write e for the expression above, and eb for the subexpression let b : (int →
int) ref = ref λx : int. x+ 38 in !b !a

T-LET

T-ALLOC

T-INT
⊢ 4 : int

⊢ ref 4 : int ref
T-LET

T-ALLOC

T-ABS

.

.

.1
a : int ref, x : int ⊢ x + 38: int

a : int ref ⊢ λx : int. x + 38: int → int

a : int ref ⊢ ref λx : int. x + 38:(int → int) ref

.

.

.2
a : int ref, b : (int → int) ref ⊢ !b !a : int

a : int ref ⊢ eb : int

⊢ e : int

The subderivation marked
...1 is:

T-ADD

T-VAR
a : int ref, x : int ⊢ x : int

T-INT
a : int ref, x : int ⊢ 38: int

a : int ref, x : int ⊢ x+ 38: int

Page 3 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

The subderivation marked
...2 is:

T-APP

T-DEREF

T-VAR
Γab ⊢ b : (int → int) ref

Γab ⊢ !b : int → int
T-DEREF

T-VAR
Γab ⊢ a : int ref

Γab ⊢ !a : int

Γab ⊢ !b !a : int

where Γab = a : int ref, b : (int → int) ref.

(b) Execute the program above for 4 small steps, to get configuration ⟨e, σ⟩. What is an appropriate Σ
such that ∅,Σ ⊢ e :τ and Σ ⊢ σ?

Answer:

⟨let a : int ref = ref 4 in let b : (int → int) ref = ref λx : int. x+ 38 in !b !a, ∅⟩
−→⟨let a : int ref = ℓa in let b : (int → int) ref = ref λx : int. x+ 38 in !b !a, [ℓa 7→ 4]⟩
−→⟨let b : (int → int) ref = ref λx : int. x+ 38 in !b !ℓa, [ℓa 7→ 4]⟩
−→⟨let b : (int → int) ref = ℓb in !b !ℓa, [ℓa 7→ 4, ℓb 7→ λx : int. x+ 38]⟩
−→⟨!ℓb !ℓa, [ℓa 7→ 4, ℓb 7→ λx : int. x+ 38]⟩

An appropriate store typing context is Σ = ℓa 7→ int, ℓb 7→ int → int.

(c) Consider a store σ = [ℓ1 7→ 42, ℓ2 7→ λn : int. n+ 1]. What is the domain of σ?

Now consider a store type Σ = [ℓ1 7→ int, ℓ2 7→ int → int]. Note that dom(σ) = dom(Σ).

Show that ∅,Σ ⊢ σ.

Answer: The domain of σ (and of Σ) is the set {ℓ1, ℓ2}.

∅,Σ ⊢ σ holds if and only if dom(σ) = dom(Σ) and for all ℓ ∈ dom(σ) we have ∅,Σ ⊢ σ(ℓ) :τ where Σ(ℓ) = τ .
Since dom(σ) = dom(Σ) = {ℓ1, ℓ2}, we need to show that:

• ∅,Σ ⊢ 42: int and

• ∅,Σ ⊢ λn : int. n+ 1: int → int

Both of these judgments hold, i.e., we can produce derivations for them (which we do not show here).

4 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does
it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing
rules.)

• ΛA. λx :A → int. 42
• λy :∀X. X → X. (y [int]) 17
• ΛY.ΛZ. λf :Y → Z. λa :Y. f a

• ΛA.ΛB.ΛC. λf :A → B → C. λb :B. λa :A. f a b

Page 4 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

Answer:

• ΛA. λx :A → int. 42 has type
∀A. (A → int) → int

• λy :∀X. X → X. (y [int]) 17 has type

(∀X. X → X) → int

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a has type

∀Y. ∀Z. (Y → Z) → Y → Z

• ΛA.ΛB.ΛC. λf :A → B → C. λb :B. λa :A. f a b has type

∀A. ∀B. ∀C. (A → B → C) → B → A → C

(b) For each of the following types, write an expression with that type.

• ∀X. X → (X → X)

• (∀C. ∀D. C → D) → (∀E. int → E)

• ∀X. X → (∀Y. Y → X)

Answer:

• ∀X. X → (X → X) is the type of
ΛX. λx :X.λy :X. y

• (∀C. ∀D. C → D) → (∀E. int → E) is the type of

λf :∀C. ∀D. C → D.ΛE. λx : int. (f [int] [E]) x

• ∀X. X → (∀Y. Y → X) is the type of

ΛX. λx :X.ΛY. λy :Y. x

5 Records and Subtyping

(a) Assume that we have a language with references and records.

(i) Write an expression with type

{ cell : int ref, inc : unit → int }

such that invoking the function in the field inc will increment the contents of the reference in the
field cell.

Answer: The following expression has the appropriate type.

let x = ref 14 in
{ cell = x, inc = λu :unit. x := (!x+ 1) }

Page 5 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an
expression that increments the contents of the cell twice.

Answer:
let z = y.inc () in y.inc ()

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will
need to use the subsumption rule.)

(λx :{dogs : int, cats : int}. x.dogs + x.cats) {dogs = 2, cats = 7,mice = 19}

Answer:

For brevity, let e1 ≡ λx :{dogs : int, cats : int}. x.dogs+x.cats) and let e2 ≡ {dogs = 2, cats = 7,mice = 19}.
The derivation has the following form.

T-APP

...1
⊢ e1 :{dogs : int, cats : int} → int

...2
⊢ e2 :{dogs : int, cats : int}

⊢ e1 e2 : int

The derivation of e1 is straight forward:

Page 6 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

T-A
BS

T-A
DD

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}

⊢
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}

⊢
x.

do
gs
: in

t

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}

⊢
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}

⊢
x.

cat
s :

int

x
:{

do
gs
: i

nt, c
ats

: i
nt}

⊢
x.

do
gs
+
x.

cat
s :

int

⊢
e1
:{

do
gs
: i

nt, c
ats

: i
nt}

→
int

The derivation of e2 requires the use of subsumption, since we need to show that e2 ≡ {dogs = 2, cats =
7,mice = 19} has type {dogs : int, cats : int}.

⊢ 2: int ⊢ 7: int ⊢ 19: int

⊢ {dogs = 2, cats = 7, mice = 19} :{dogs : int, cats : int, mice : int} {dogs : int, cats : int, mice : int} ≤ {dogs : int, cats : int}
⊢ {dogs = 2, cats = 7, mice = 19} :{dogs : int, cats : int}

(c) Suppose that Γ is a typing context such that

Γ(a) = {dogs : int, cats : int,mice : int}
Γ(f) = {dogs : int, cats : int} → {apples : int, kiwis : int}

Write an expression e that uses variables a and f and has type {apples : int} under context Γ, i.e.,

Page 7 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

Γ ⊢ e :{apples : int}. Write a typing derivation for it.

Answer: A suitable expressions is f a. Note that f is a function that expects an expression of type {dogs :
int, cats : int} as an argument. Variable a is of type {dogs : int, cats : int,mice : int}, which is a subtype, so we
can use a as an argument to f .

Function f returns a value of type {apples : int, kiwis : int} but our expression e needs to return a value of type
{apples : int}. But {apples : int, kiwis : int} is a subtype of {apples : int}, so it works out.

Here is a typing derivation for it. We abbreviate type {dogs : int, cats : int,mice : int} to DCM and abbreviate
type {dogs : int, cats : int} to DC.

Which of the inference rules are uses of subsumption? Some of the derivations have been elided. Fill them in.

Γ
⊢ f

:{d
og

s :
int, c

ats
: in

t}
→
{ap

ple
s :

int, k
iw

is :
int}

Γ
⊢ a

:D
CM

. . .

DCM
≤

DC

Γ
⊢ a

:D
C

Γ
⊢ f

a :
{ap

ple
s :

int, k
iw

is :
int}

. . .

{ap
ple

s :
int, k

iw
is :

int}
≤
{ap

ple
s :

int}

Γ
⊢ f

a :
{ap

ple
s :

int}

(d) Which of the following are subtypes of each other?

Page 8 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

(a) {dogs : int, cats : int} → {apples : int}
(b) {dogs : int} → {apples : int}
(c) {dogs : int} → {apples : int, kiwis : int}
(d) {dogs : int, cats : int,mice : int} → {apples : int, kiwis : int}
(e) ({apples : int}) ref

(f) ({apples : int, kiwis : int}) ref

(g) ({kiwis : int, apples : int}) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and
for pairs that aren’t subtypes, also make sure you understand).

Answer: Of the function types:

• (b) is a subtype of (a)

• (c) is a subtype of (b)

• (c) is a subtype of (d)

• (c) is a subtype of (a)

• (d) is not a subtype of either (a) or (b), or vice versa

The key thing is that for τ1 → τ2 to be a subtype of τ ′1 → τ ′2, we must be contravariant in the argument type
and covariant in the result type, i.e., τ ′1 ≤ τ1 and τ2 ≤ τ ′2.

Let’s consider why (b) is a subtype of (a), i.e., {dogs : int} → {apples : int} ≤ {dogs : int, cats : int} → {apples :
int}. Suppose we have a function fb of type {dogs : int} → {apples : int}, and we want to use it somewhere that
wants a function ga of type {dogs : int, cats : int} → {apples : int}. Let’s think about how ga could be used: it
could be given an argument of type {dogs : int, cats : int}, and so fb had better be able to handle any record that
has the fields dogs and cats. Indeed, fb can be given any value of type {dogs : int}, i.e., any record that has a field
dogs. So fb can take any argument that gb can be given The other way that a function can be used is by taking
the result of applying it. The result types of the functions are the same, so we have no problem there. Here is a
derivation showing the subtyping relation:

{dogs : int, cats : int} ≤ {dogs : int} {apples : int} ≤ {apples : int}
{dogs : int} → {apples : int} ≤ {dogs : int, cats : int} → {apples : int}

Let’s consider why (d) is not a subtype of (a) and (a) is not a subtype of (d). (d) is not a subtype of (a) since they
are not contravariant in the argument type (i.e., the argument type of (a) is not a subtype of the argument type
of (d)). (a) is not a subtype of (d) since the result type of (a) is not a subtype of the result type of (d) (i.e., they
are not covariant in the result type).

For the ref types:

• (f) is a subtype of (g) (and vice versa) assuming the more permissive subtyping rule for records that allows
the order of fields to be changed.

• (e) is not a subtype of either (f) or (g), or vice versa.

Page 9 of 9


