Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

Week 7: Tue Mar 6-Fri Mar 10, 2023

1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 13§1.1).

(a) Write a program that constructs two values of type int + (int — int), one using left injection, and one
using right injection.

Answer:

leta:int+ (int% int) = in/,-,,,+(,-,,,_,,-,,,) 3in
inr,-,,,+(,-,,H,-,,,) Ax:int.3

(b) Write a function that takes a value of type int + (int — int) and if the value is an integer, it adds 7 to
it, and if the value is a function it applies the function to 42.

Answer:

Aa:int+ (int — int). case a of \y:int.y + 7 | Af:int — int. f 42

(c) Give a typing derivation for the following program.

Ap: (unit — int) x (int — int). \z:unit + int.casez of #1 p | #2p

Answer: For brevity, let ey = Az : unit+ int.casex of #1 p | #2 pand let T' = {p: (unit — int) x (int —
int), x: unit + int}

T-VAR T-VAR
T + p:(unit — int x int — int) T + p: (unit — int x int — int)
T-VAR — T-LPROJ - - T-RPROJ - -
I' = «: unit + int I' = #1 p:unit — int I' = #2p:int — int
T casex of #1p | #2p:int

p: (unit — int) x (int — int) = X\ :unit + int. case © of #1 p | #2 p: (unit + int) — int

T-CASE

T-ABS

T-ABS
= Xp: (unit — int) x (int — int). ey : ((unit — int) x (int — int)) — (unit + int) — int

(d) Write a program that uses the term in part (c) above to produce the value 42.

Answer: We refer to the term in part (c) above as f.

£ Az unit. 42, Az int. 41) inlynies ing ()




Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

2 Recursion

(a) Use the uz. e expression to write a function that takes a natural number n and returns the sum of
all even natural numbers less than or equal to n. (You can assume you have appropriate integer
comparison operators, and also a modulus operator.)

Answer:
pf. An.ifn < 0then 0 else if (n mod2) =0thenn+ f (n—2)else f (n—1)

(b) Try executing your program by applying it to the number 5.

Answer: The program executes correctly and returns 6. For brevity, we will refer to the expression from the answer
above as F.

F5
—(An.ifn < 0then 0 else if (n mod2) =0thenn+ F (n—2)else F (n—1))5
—if5 <0thenOelseif (5 mod2) =0then5+ F (5—2)else F' (5 —1)
—if falsethen 0 else if (5 mod2) =0then5+ F (5 —2)else F (5—1)
—if (5 mod2) =0then5+ F (5 —2) else F (5—1)
—if1=0then5+ F (5—2)else F (5—1)
—if falsethen 5 + F' (5 — 2) else I (5 — 1)
F(55-1)
—(An.ifn < 0then 0 elseif (n mod2) =0thenn+ F (n—2)else F (n—1)) (5—1)
—(An.ifn < 0then 0 else if (n mod2) =0thenn+ F (n—2)else FF (n—1)) 4
—if4 <0thenOelseif (4 mod2) =0then4 + F' (4 —2) else ' (4 — 1)
—if false then 0 else if (41 mod2) =0then4+ F (4 —2) else F (4 — 1)
—if (4 mod2) =0then4+ F (4 —2)else F (4 — 1)
—if0=0then4+ F (4—2)else FF (4 —1)
—if truethen 4+ F (4 —2) else F (4 — 1)
— 4+ F(4-2)
—4 4+ (An.ifn < 0thenOelseif (n mod2) =0thenn+ F (n—2)else F (n—1)) (4 —2)
—4 + (An.if n <0then O else if (n mod2) =0thenn+ F (n—2)else F' (n —1)) 2

(
—4 + (if2<0thenOelseif (2mod2) =0then2+ F (2 —2)else F' (2 - 1))
—4 + (if false then 0 else if (2 mod2) =0then2+ F (2 —2)else F (2—1))
—4 4 (if (2mod2) =0then2+ F (2 —2) else F (2—1))
—4+ (if0=0then2+ F (2—-2)else F (2—1))
—4 + (if truethen 2+ F (2 —2) else F (2 —1))
—d+ (24 F (2-2))
—4+ (24 (An.ifn <0thenOelseif (n mod2) =0thenn+ F (n —2) else F (n—1)) (2 — 2))
—4+ (2+ (An.if n <0then 0 elseif (n mod2) =0thenn+ F (n —2) else F (n — 1)) 0)
—4+ (2+ (An.ifn < 0thenOelseif (n mod2) =0thenn+ F (n —2) else F (n—1)) 0)
— 4+ (2+ (ifo<0thenOelseif (0 mod2) =0then0+ F (0 —2)else F (0—1)))
—4 + (2 + (if true then 0 else if (0 mod2) =0then0+ F (0 —2) else F' (0 — 1)))

Page 2 of 9




Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

—4+(2+(0))

*

—"6

(c) Give a typing derivation for the following program. What happens if you execute the program?

pp: (int — int) x (int — int). (An:int.n + 1, #1 p)

Answer: For brevity, we write T, for the type (int — int) x (int — int).

T-VAR - - T-INT . .
T-SUM p:Tp,n:int n:int p:Tp,niint= 1:int TVAR
T-ABs p:Tp,n:intt-n + 1:int T-PrO] piTp b piTy
T-PAIR p:Tp - Anzint.n + 1:int — int p:7p b #1 print — int
T-REC p:7p b (Anzint.n 4+ 1, #1p):1p

Fpp:mp. (Anzint.n+ 1, #1p):1p

Now, if you actually tried to execute this expression under a Call-By-Value semantics, it would unfold the recursive
expression to (An : int.n + 1,#1 P), where P is the recursive expression up : (int — int) x (int — int). (An :
int.n + 1,41 p). While the first element of the pair is a value, the second #2 P is not, and so we would attempt to
evaluate that expression. However, that requires evaluating the expression P = up: (int — int) x (int — int). (An:
int.n + 1,#1 p).

So, under Call-by-Value semantics, the program will not terminate.

3 References

(a) Give a typing derivation for the following program.

leta:intref =ref4in

letb: (int — int) ref = ref Az:int. 2 + 38 in
bla

Answer: For brevity, we will write e for the expression above, and ey, for the subexpression letb : (int —
int) ref = ref \x:int. x4+ 38 inb la

1
a:intref, z:int - = + 38:int
a:intref = \x:int. x 4 38:int — int

T-ABS

TIN——— T-ALLOC _ - ; _ . __ 2 .
= 4:int a:intref - ref \x :int. x 4 38: (int — int) ref a:intref, b: (int — int) ref = !b!a:int
T-ALLOC - T-LET - -
§ - ref4:int ref a:intref - ey :int
T-LET
- e:int
The subderivation marked :1 is:
T-VAR - - . T-INT . - .
a:intref x:intt- x:int a:int ref x:int\- 38:int
T-ADD

a:intref x:int+ x + 38:int

Page 3 of 9




Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

The subderivation marked ‘5 is:

T-VAR . _ T-VAR -
Ty b b: (int — int) ref Ly F a:int ref
T-DEREF - - T-DEREF -
T'w F1b:int — int Ty la:int
T-ArpP .
T 10la:int

where Lo, = a:int ref,b: (int — int) ref.

(b) Execute the program above for 4 small steps, to get configuration (e, o). What is an appropriate ¥
suchthat(),X Fe:7and X + o?

Answer:

(leta:int ref= ref4 inletb: (int — int) ref = ref \x:int.x + 38 in!b a, )
—(leta:intref={, inletb: (int — int) ref = ref \x:int.x + 38 in!b la, [¢, — 4])
—(letb: (int — int) ref = ref \x:int.z + 38 in1b ¢, [, — 4])

—(letb: (int — int) ref = ¢, inb ¢, [0, — 4,0, — Az:int. x + 38])
— (1 Wo, [y — 4,0y — \z:int. z + 38])

An appropriate store typing context is ¥ = £, — int, £, — int — int

(c) Consider a store o = [¢1 > 42,42 — An:int.n + 1]. What is the domain of ¢?
Now consider a store type ¥ = [¢; — int, {5 — int — int]. Note that dom(c) = dom(X).
Show that ), X + o.

Answer: The domain of o (and of ¥) is the set {{1, {2}

0,% & o holds if and only if dom(c) = dom(X) and for all £ € dom(c) we have B, X+ o (€) : 7 where L(¢) = 7.
Since dom(c) = dom(X) = {¢1, €2}, we need to show that:

e (), X+ 42:intand
e ),XF An:int.n 4+ 1:int — int

Both of these judgments hold, i.e., we can produce derivations for them (which we do not show here).

4 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does
it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing
rules.)

* AA dz:A—int. 42

e \y:VX. X — X. (y [int]) 17

e A YAZ MY - Z. Xa:Y. fa

e AMAAB.ACANf:A—- B —=C.Ab:B.\a:A. fab

Page 4 of 9




Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

Answer:

o AA. Xx:A — int. 42 has type
VA. (A — int) — int

* \y:VX. X — X. (y [inf]) 17 has type
(VX. X - X) — int
* AY AZ Nf:Y — Z. Xa:Y. f a has type
YWNZ (Y - 2)=>Y > Z
* M. AB.AC.Af:A— B —= C.Ab:B. Xa:A. f abhas type

VA.VB.VC.(A—-B—-C)—»B—>A—-C

(b) For each of the following types, write an expression with that type.

e VX. X - (X =» X)
e (VC.VD.C — D) — (VE.int —» E)
e VX. X - (WY - X)

Answer:

* VX. X — (X — X)) is the type of
AX. dx: X y: Xy

e VC.VD.C — D) — (VE. int — E) is the type of
Af:VC.¥D. C = D.AE. \z:int. (f [inf] [E])
e VX. X — (VY. Y — X) is the type of

AX. dx: X.AY. \y:Y.x

5 Records and Subtyping

(@) Assume that we have a language with references and records.
(i) Write an expression with type
{ cell : intref,inc : unit — int }

such that invoking the function in the field inc will increment the contents of the reference in the
field cell.

Answer: The following expression has the appropriate type.

letx =refl4 in
{ cell =z, inc= A u:unit.z = (lx +1) }

Page 5 of 9




Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

(if) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an
expression that increments the contents of the cell twice.

Answer:
let z = y.inc () iny.inc ()

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will
need to use the subsumption rule.)

(Az:{dogs : int, cats : int}. x.dogs + x.cats) {dogs = 2, cats = 7, mice = 19}

Answer:

For brevity, let e; = \x:{dogs : int, cats : int}. x.dogs+x.cats) and let e; = {dogs = 2, cats = 7, mice = 19}.
The derivation has the following form.

H 2
ey :{dogs : int cats : int} — int F ez:{dogs : int, cats : int}

T-APP -
Feq ex:int

The derivation of ey is straight forward:

Page 6 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

The derivation of ey requires the use of subsumption, since we need to show that e; = {dogs = 2,cats =
7, mice = 19} has type {dogs : int, cats : int}.

F2:int +7:int + 19:int
= {dogs = 2, cats = 7, mice = 19} : {dogs : int, cats : int, mice : int} {dogs : int, cats : int, mice : int} < {dogs : int, cats : int}

F {dogs = 2, cats = 7, mice = 19} : {dogs : int, cats : int}

(c) Suppose that I is a typing context such that
I'(a) = {dogs:int, cats:int, mice:int}
I'(f) = {dogs:int, cats:int} — {apples:int, kiwis:int}

Write an expression e that uses variables a and f and has type {apples : int} under context I, i.e.,

Page 7 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

Ik e:{apples:int}. Write a typing derivation for it.

Answer: A suitable expressions is f a. Note that f is a function that expects an expression of type {dogs :
int,cats: int} as an argument. Variable a is of type {dogs : int, cats : int, mice : int}, which is a subtype, so we
can use a as an argument to f.

Function f returns a value of type {apples: int, kiwis : int} but our expression e needs to return a value of type
{apples:int}. But {apples: int, kiwis: int} is a subtype of {apples: int}, so it works out.

Here is a typing derivation for it. We abbreviate type {dogs : int, cats : int, mice : int} to DCM and abbreviate
type {dogs: int, cats: int} to DC.

Which of the inference rules are uses of subsumption? Some of the derivations have been elided. Fill them in.

(d) Which of the following are subtypes of each other?

Page 8 of 9



Products and Sums; Recursion; References; Polymorphism; Records; Subtyping
Section and Practice Problems

(a) {dogs:int,cats:int} — {apples:int}

(b) {dogs:int} — {apples:int}

(c) {dogs:int} — {apples:int, kiwis:int}

(d) {dogs:int,cats:int, mice:int} — {apples:int, kiwis:int}
(e) ({apples:int}) ref

(f) ({apples:int, kiwis:int}) ref

(g) ({kiwis:int,apples:int}) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and
for pairs that aren’t subtypes, also make sure you understand).

Answer: Of the function types:

* (b) is a subtype of (a)
* (c) is a subtype of (b)
* (c) is a subtype of (d)
* (c) is a subtype of (a)
* (d) is not a subtype of either (a) or (b), or vice versa

The key thing is that for 1 — T to be a subtype of | — T4, we must be contravariant in the argument type
and covariant in the result type, i.e., 71 < 11 and 7o < 7.

Let’s consider why (b) is a subtype of (a), i.e., {dogs:inty — {apples:int} < {dogs:int, cats:int} — {apples:
int}y. Suppose we have a function fy of type {dogs: int} — {apples:int}, and we want to use it somewhere that
wants a function g, of type {dogs : int, cats : int} — {apples: int}. Let’s think about how g, could be used: it
could be given an argument of type {dogs: int, cats: int}, and so f;, had better be able to handle any record that
has the fields dogs and cats. Indeed, f, can be given any value of type {dogs: int}, i.e., any record that has a field
dogs. So fy, can take any argqument that g, can be given The other way that a function can be used is by taking
the result of applying it. The result types of the functions are the same, so we have no problem there. Here is a
derivation showing the subtyping relation:

{dogs:int, cats: int} < {dogs:int} {apples:int} < {apples:int}
{dogs:int} — {apples:int} < {dogs:int, cats:int} — {apples:int}

Let’s consider why (d) is not a subtype of (a) and (a) is not a subtype of (d). (d) is not a subtype of (a) since they
are not contravariant in the arqument type (i.e., the argument type of (a) is not a subtype of the arqument type
of (d)). (a) is not a subtype of (d) since the result type of (a) is not a subtype of the result type of (d) (i.e., they
are not covariant in the result type).

For the ref types:

* (f) is a subtype of (g) (and vice versa) assuming the more permissive subtyping rule for records that allows
the order of fields to be changed.

* (e) is not a subtype of either (f) or (g), or vice versa.

Page 9 of 9




