Products and Sums; Recursion; References; Polymorphism; Records; Subtyping Section and Practice Problems

Week 7: Tue Mar 6-Fri Mar 10, 2023

1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 13§1.1).
(a) Write a program that constructs two values of type int + (int \rightarrow int), one using left injection, and one using right injection.

Answer:

$$
\begin{aligned}
& \text { let } a: \text { int }+(\text { int } \rightarrow \boldsymbol{i n t})=\text { inl } l_{\text {int }+(\text { int } \rightarrow \text { int })} 3 \text { in } \\
& \text { inr }_{\text {int }+(\text { int } \rightarrow \text { int })} \lambda x: \text { int. } 3
\end{aligned}
$$

(b) Write a function that takes a value of type int $+(\mathbf{i n t} \rightarrow \mathbf{i n t})$ and if the value is an integer, it adds 7 to it, and if the value is a function it applies the function to 42.

Answer:

$$
\lambda a: \text { int }+(\text { int } \rightarrow \text { int }) . \text { case } a \text { of } \lambda y: \text { int. } y+7 \mid \lambda f: \text { int } \rightarrow \text { int. } f 42
$$

(c) Give a typing derivation for the following program.

$$
\lambda p:(\mathbf{u n i t} \rightarrow \mathbf{i n t}) \times(\mathbf{i n t} \rightarrow \mathbf{i n t}) \cdot \lambda x: \text { unit }+ \text { int. case } x \text { of } \# 1 p \mid \# 2 p
$$

Answer: For brevity, let $e_{1} \equiv \lambda x$: unit + int. case x of $\# 1 p \mid \# 2 p$ and let $\Gamma=\{p:(\boldsymbol{u n i t} \rightarrow \boldsymbol{i n t}) \times(\boldsymbol{i n t} \rightarrow$ int), x : unit + int $\}$

(d) Write a program that uses the term in part (c) above to produce the value 42.

Answer: We refer to the term in part (c) above as f.

$$
f\left(\lambda x: \text { unit. } 42, \lambda x: \text { int. 41) inl }{ }_{\text {unit }} \text { int }()\right.
$$

2 Recursion

(a) Use the $\mu x . e$ expression to write a function that takes a natural number n and returns the sum of all even natural numbers less than or equal to n. (You can assume you have appropriate integer comparison operators, and also a modulus operator.)

Answer:

$$
\mu f . \lambda n \text {. if } n \leq 0 \text { then } 0 \text { else if }(n \bmod 2)=0 \text { then } n+f(n-2) \text { else } f(n-1)
$$

(b) Try executing your program by applying it to the number 5.

Answer: The program executes correctly and returns 6. For brevity, we will refer to the expression from the answer above as F.

F 5

$\longrightarrow(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1)) 5$
\longrightarrow if $5 \leq 0$ then 0 else if $(5 \bmod 2)=0$ then $5+F(5-2)$ else $F(5-1)$
\longrightarrow if false then 0 else if $(5 \bmod 2)=0$ then $5+F(5-2)$ else $F(5-1)$
\longrightarrow if $(5 \bmod 2)=0$ then $5+F(5-2)$ else $F(5-1)$
\longrightarrow if $1=0$ then $5+F(5-2)$ else $F(5-1)$
\longrightarrow if false then $5+F(5-2)$ else $F(5-1)$
$\longrightarrow F(5-1)$
$\longrightarrow(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1))(5-1)$
$\longrightarrow(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1)) 4$
\longrightarrow if $4 \leq 0$ then 0 else if $(4 \bmod 2)=0$ then $4+F(4-2)$ else $F(4-1)$
\longrightarrow if false then 0 else if $(4 \bmod 2)=0$ then $4+F(4-2)$ else $F(4-1)$
\longrightarrow if $(4 \bmod 2)=0$ then $4+F(4-2)$ else $F(4-1)$
$\longrightarrow \mathbf{i f} 0=0$ then $4+F(4-2)$ else $F(4-1)$
\longrightarrow if true then $4+F(4-2)$ else $F(4-1)$
$\longrightarrow 4+F(4-2)$
$\longrightarrow 4+(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1))(4-2)$
$\longrightarrow 4+(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1)) 2$
$\longrightarrow 4+($ if $2 \leq 0$ then 0 else if $(2 \bmod 2)=0$ then $2+F(2-2)$ else $F(2-1))$
$\longrightarrow 4+$ (if false then 0 else if $(2 \bmod 2)=0$ then $2+F(2-2)$ else $F(2-1)$)
$\longrightarrow 4+($ if $(2 \bmod 2)=0$ then $2+F(2-2)$ else $F(2-1))$
$\longrightarrow 4+($ if $0=0$ then $2+F(2-2)$ else $F(2-1))$
$\longrightarrow 4+$ (if true then $2+F(2-2)$ else $F(2-1)$)
$\longrightarrow 4+(2+F(2-2))$
$\longrightarrow 4+(2+(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1))(2-2))$
$\longrightarrow 4+(2+(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1)) 0)$
$\longrightarrow 4+(2+(\lambda n$. if $n \leq 0$ then 0 else if $(n \bmod 2)=0$ then $n+F(n-2)$ else $F(n-1)) 0)$
$\longrightarrow 4+(2+($ if $0 \leq 0$ then 0 else if $(0 \bmod 2)=0$ then $0+F(0-2)$ else $F(0-1)))$
$\longrightarrow 4+(2+($ if true then 0 else if $(0 \bmod 2)=0$ then $0+F(0-2)$ else $F(0-1)))$

```
\longrightarrow 4 + ( 2 + ( 0 ) )
\longrightarrow * * * )
```

(c) Give a typing derivation for the following program. What happens if you execute the program?

$$
\mu p:(\text { int } \rightarrow \text { int }) \times(\text { int } \rightarrow \text { int }) .(\lambda n: \text { int. } n+1, \# 1 p)
$$

Answer: For brevity, we write τ_{p} for the type $($ int $\rightarrow \boldsymbol{i n t}) \times($ int $\rightarrow \boldsymbol{i n t})$.

Now, if you actually tried to execute this expression under a Call-By-Value semantics, it would unfold the recursive expression to $(\lambda n$: int. $n+1, \# 1 P)$, where P is the recursive expression $\mu p:(\boldsymbol{i n t} \rightarrow \boldsymbol{i n t}) \times(\boldsymbol{i n t} \rightarrow \boldsymbol{i n t})$. $(\lambda n:$ int. $n+1, \# 1 p$). While the first element of the pair is a value, the second $\# 2 P$ is not, and so we would attempt to evaluate that expression. However, that requires evaluating the expression $P \equiv \mu p:(\boldsymbol{i n t} \rightarrow \boldsymbol{i n t}) \times(\boldsymbol{i n t} \rightarrow \boldsymbol{i n t})$. $(\lambda n$: int. $n+1, \# 1 p$).

So, under Call-by-Value semantics, the program will not terminate.

3 References

(a) Give a typing derivation for the following program.

$$
\begin{aligned}
& \text { let } a: \text { int ref }=\text { ref } 4 \text { in } \\
& \text { let } b:(\text { int } \rightarrow \text { int }) \text { ref }=\text { ref } \lambda x: \text { int. } x+38 \text { in } \\
& !b!a
\end{aligned}
$$

Answer: For brevity, we will write e for the expression above, and e_{b} for the subexpression let $b:$ (int \rightarrow int) $\boldsymbol{r e f}=$ ref $\lambda x:$ int. $x+38$ in $!b!a$

The subderivation marked \vdots_{1} is:

$$
\mathrm{T}-\mathrm{ADD} \frac{\mathrm{~T}-\mathrm{VAR} \frac{a}{a: \text { int ref, } x: \text { int } \vdash x: \text { int }} \quad \mathrm{T}-\mathrm{INT} \overline{a: \text { int ref, } x: \text { int } \vdash 38: \text { int }}}{a: \text { int ref, } x: \text { int } \vdash x+38: \text { int }}
$$

The subderivation marked $:_{2}$ is:

where $\Gamma_{a b}=a$: int ref, $b:($ int \rightarrow int $)$ ref.
(b) Execute the program above for 4 small steps, to get configuration $\langle e, \sigma\rangle$. What is an appropriate Σ such that $\emptyset, \Sigma \vdash e: \tau$ and $\Sigma \vdash \sigma$?

Answer:

$$
\begin{aligned}
& \langle\text { let } a: \text { int ref }=\text { ref } 4 \text { in let } b:(\text { int } \rightarrow \text { int }) \text { ref }=\text { ref } \lambda x: \text { int. } x+38 \text { in }!b!a, \emptyset\rangle \\
\longrightarrow & \left\langle\text { let } a: \text { int ref }=\ell_{a} \text { in let } b:(\text { int } \rightarrow \text { int }) \text { ref }=\text { ref } \lambda x: \text { int. } x+38 \text { in }!b!a,\left[\ell_{a} \mapsto 4\right]\right\rangle \\
\longrightarrow & \left\langle\text { let } b:(\text { int } \rightarrow \text { int }) \text { ref }=\text { ref } \lambda x: \text { int. } x+38 \text { in }!b!\ell_{a},\left[\ell_{a} \mapsto 4\right]\right\rangle \\
\longrightarrow & \left\langle l \text { let } b:(\text { int } \rightarrow \text { int }) \text { ref }=\ell_{b} \text { in }!b!\ell_{a},\left[\ell_{a} \mapsto 4, \ell_{b} \mapsto \lambda x: \text { int. } x+38\right]\right\rangle \\
\longrightarrow & \left\langle!\ell_{b}!\ell_{a},\left[\ell_{a} \mapsto 4, \ell_{b} \mapsto \lambda x: \text { int. } x+38\right]\right\rangle
\end{aligned}
$$

An appropriate store typing context is $\Sigma=\ell_{a} \mapsto \mathbf{i n t}, \ell_{b} \mapsto \mathbf{i n t} \rightarrow$ int.
(c) Consider a store $\sigma=\left[\ell_{1} \mapsto 42, \ell_{2} \mapsto \lambda n\right.$: int. $\left.n+1\right]$. What is the domain of σ ?

Now consider a store type $\Sigma=\left[\ell_{1} \mapsto \mathbf{i n t}, \ell_{2} \mapsto \mathbf{i n t} \rightarrow \mathbf{i n t}\right]$. Note that $\operatorname{dom}(\sigma)=\operatorname{dom}(\Sigma)$.
Show that $\emptyset, \Sigma \vdash \sigma$.

Answer: The domain of σ (and of Σ) is the set $\left\{\ell_{1}, \ell_{2}\right\}$.
$\emptyset, \Sigma \vdash \sigma$ holds if and only if $\operatorname{dom}(\sigma)=\operatorname{dom}(\Sigma)$ and for all $\ell \in \operatorname{dom}(\sigma)$ we have $\emptyset, \Sigma \vdash \sigma(\ell): \tau$ where $\Sigma(\ell)=\tau$.
Since $\operatorname{dom}(\sigma)=\operatorname{dom}(\Sigma)=\left\{\ell_{1}, \ell_{2}\right\}$, we need to show that:

- $\emptyset, \Sigma \vdash 42$: int and
- $\emptyset, \Sigma \vdash \lambda n$: int. $n+1$: int \rightarrow int

Both of these judgments hold, i.e., we can produce derivations for them (which we do not show here).

4 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)

- $\Lambda A . \lambda x: A \rightarrow$ int. 42
- $\lambda y: \forall X . X \rightarrow X .(y[$ int $]) 17$
- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y . f a$
- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A . f a b$

Answer:

- $\Lambda A . \lambda x: A \rightarrow$ int. 42 has type

$$
\forall A .(A \rightarrow \text { int }) \rightarrow \text { int }
$$

- $\lambda y: \forall X . X \rightarrow X .(y[$ int $]) 17$ has type

$$
(\forall X . X \rightarrow X) \rightarrow \text { int }
$$

- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y$. f a has type

$$
\forall Y . \forall Z .(Y \rightarrow Z) \rightarrow Y \rightarrow Z
$$

- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A$. f a b has type

$$
\forall A . \forall B . \forall C .(A \rightarrow B \rightarrow C) \rightarrow B \rightarrow A \rightarrow C
$$

(b) For each of the following types, write an expression with that type.

- $\forall X . X \rightarrow(X \rightarrow X)$
- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E . \operatorname{int} \rightarrow E)$
- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$

Answer:

- $\forall X . X \rightarrow(X \rightarrow X)$ is the type of

$$
\Lambda X . \lambda x: X . \lambda y: X . y
$$

- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E$. int $\rightarrow E)$ is the type of

$$
\lambda f: \forall C . \forall D . C \rightarrow D . \Lambda E . \lambda x: \text { int. }(f[\boldsymbol{i n t}][E]) x
$$

- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$ is the type of

$$
\Lambda X . \lambda x: X . \Lambda Y \cdot \lambda y: Y . x
$$

5 Records and Subtyping

(a) Assume that we have a language with references and records.
(i) Write an expression with type

$$
\{\text { cell }: \text { int ref, inc : unit } \rightarrow \text { int }\}
$$

such that invoking the function in the field inc will increment the contents of the reference in the field cell.

Answer: The following expression has the appropriate type.

$$
\begin{aligned}
& \text { let } x=\text { ref } 14 \text { in } \\
& \{\text { cell }=x, \text { inc }=\lambda u: \text { unit. } x:=(!x+1)\}
\end{aligned}
$$

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an expression that increments the contents of the cell twice.

Answer:

$$
\text { let } z=y . \operatorname{inc}() \text { in y.inc }()
$$

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will need to use the subsumption rule.)

$$
(\lambda x:\{\operatorname{dog} s: \text { int }, \text { cats }: \text { int }\} . x \cdot \operatorname{dogs}+x . c a t s)\{\operatorname{dogs}=2, \text { cats }=7, \text { mice }=19\}
$$

Answer:

For brevity, let $e_{1} \equiv \lambda x:\{$ dogs : int, cats : int $\left.\} . x . \operatorname{dogs}+x . c a t s\right)$ and let $e_{2} \equiv\{$ dogs $=2$, cats $=7$, mice $=19\}$. The derivation has the following form.

$$
\mathrm{T}-\mathrm{APP} \frac{\frac{\vdots_{1}}{\vdash e_{1}:\{\operatorname{dog} s: \text { int }, \text { cats }: \text { int }\} \rightarrow \boldsymbol{i n t}} \quad \frac{\vdots_{2}}{\vdash e_{2}:\{\operatorname{dog} s: \text { int, cats }: \text { int }\}}}{\vdash e_{1} e_{2}: \boldsymbol{i n t}}
$$

The derivation of e_{1} is straight forward:

The derivation of e_{2} requires the use of subsumption, since we need to show that $e_{2} \equiv\{$ dogs $=2$, cats $=$ 7 , mice $=19\}$ has type $\{$ dogs $:$ int, cats $:$ int $\}$.

$$
\frac{\vdash 2: \text { int } \vdash 7: \text { int } \quad \vdash 19: \text { int }}{\qquad\{\text { dogs }=2, \text { cats }=7, \text { mice }=19\}:\{\text { dogs }: \text { int, cats }: \text { int }, \text { mice }: \text { int }\}} \quad \frac{\{\text { dogs }: \text { int, cats }: \text { int }, \text { mice }: \text { int }\} \leq\{\text { dogs }: \text { int }, \text { cats }: \text { int }\}}{}
$$

(c) Suppose that Γ is a typing context such that

$$
\begin{aligned}
& \Gamma(a)=\{\text { dogs }: \text { int, cats }: \text { int, mice }: \text { int }\} \\
& \Gamma(f)=\{\text { dogs }: \text { int, cats }: \text { int }\} \rightarrow\{\text { apples: int, kiwis: int }\}
\end{aligned}
$$

Write an expression e that uses variables a and f and has type \{apples : int $\}$ under context Γ, i.e.,
$\Gamma \vdash e:\{$ apples: int $\}$. Write a typing derivation for it.

Answer: A suitable expressions is $f a$. Note that f is a function that expects an expression of type \{dogs : int, cats : int $\}$ as an argument. Variable a is of type $\{$ dogs : int, cats : int, mice : int $\}$, which is a subtype, so we can use a as an argument to f.

Function f returns a value of type \{apples: int, kiwis: int\} but our expression e needs to return a value of type \{apples: int\}. But \{apples:int, kiwis:int\} is a subtype of \{apples: int $\}$, so it works out.
Here is a typing derivation for it. We abbreviate type \{dogs : int, cats : int,mice : int $\}$ to DCM and abbreviate type $\{$ dogs : int, cats: int $\}$ to DC.

Which of the inference rules are uses of subsumption? Some of the derivations have been elided. Fill them in.

(d) Which of the following are subtypes of each other?
(a) $\{$ dogs:int, cats:int $\} \rightarrow\{$ apples:int $\}$
(b) $\{$ dogs:int $\} \rightarrow$ \{apples:int $\}$
(c) $\{$ dogs:int $\} \rightarrow\{$ apples:int, kiwis:int $\}$
(d) \{dogs:int, cats:int, mice:int $\} \rightarrow$ \{apples:int, kiwis:int $\}$
(e) (\{apples:int $\}$) ref
(f) (\{apples:int, kiwis:int $\})$ ref
(g) (\{kiwis:int, apples:int $\}$) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and for pairs that aren't subtypes, also make sure you understand).

Answer: Of the function types:

- (b) is a subtype of (a)
- (c) is a subtype of (b)
- (c) is a subtype of (d)
- (c) is a subtype of (a)
- (d) is not a subtype of either (a) or (b), or vice versa

The key thing is that for $\tau_{1} \rightarrow \tau_{2}$ to be a subtype of $\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}$, we must be contravariant in the argument type and covariant in the result type, i.e., $\tau_{1}^{\prime} \leq \tau_{1}$ and $\tau_{2} \leq \tau_{2}^{\prime}$.
Let's consider why (b) is a subtype of (a), i.e., $\{$ dogs : int $\} \rightarrow\{$ apples : int $\} \leq\{$ dogs : int, cats: int $\} \rightarrow\{$ apples: int $\}$. Suppose we have a function f_{b} of type $\{$ dogs : int $\} \rightarrow\{$ apples: int $\}$, and we want to use it somewhere that wants a function g_{a} of type $\{$ dogs : int, cats: int $\} \rightarrow$ \{apples : int $\}$. Let's think about how g_{a} could be used: it could be given an argument of type $\{$ dogs: int, cats: int $\}$, and so f_{b} had better be able to handle any record that has the fields dogs and cats. Indeed, f_{b} can be given any value of type $\{d o g s:$ int $\}$, i.e., any record that has a field dogs. So f_{b} can take any argument that g_{b} can be given The other way that a function can be used is by taking the result of applying it. The result types of the functions are the same, so we have no problem there. Here is a derivation showing the subtyping relation:

$$
\begin{aligned}
& \{\text { dogs : int, cats : int }\} \leq\{\text { dogs : int }\} \quad \text { \{apples : int }\} \leq\{\text { apples : int }\} \\
& \{\text { dogs: int }\} \rightarrow\{\text { apples }: \mathbf{i n t}\} \leq\{\text { dogs:int, cats:int }\} \rightarrow\{\text { apples }: \mathbf{i n t}\}
\end{aligned}
$$

Let's consider why (d) is not a subtype of (a) and (a) is not a subtype of (d). (d) is not a subtype of (a) since they are not contravariant in the argument type (i.e., the argument type of (a) is not a subtype of the argument type of (d)). (a) is not a subtype of (d) since the result type of (a) is not a subtype of the result type of (d) (i.e., they are not covariant in the result type).
For the ref types:

- (f) is a subtype of (g) (and vice versa) assuming the more permissive subtyping rule for records that allows the order of fields to be changed.
- (e) is not a subtype of either (f) or (g), or vice versa.

