1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 13§1.1).

(a) Write a program that constructs two values of type int + (int → int), one using left injection, and one using right injection.

(b) Write a function that takes a value of type int + (int → int) and if the value is an integer, it adds 7 to it, and if the value is a function it applies the function to 42.

(c) Give a typing derivation for the following program.
\[\lambda p: (\text{unit} \to \text{int}) \times (\text{int} \to \text{int}).\ \lambda x: \text{unit} + \text{int}.\ \text{case}\ x\ of\ \#1\ p\ |\ \#2\ p \]

(d) Write a program that uses the term in part (c) above to produce the value 42.

2 Recursion

(a) Use the \(\mu x. e \) expression to write a function that takes a natural number \(n \) and returns the sum of all even natural numbers less than or equal to \(n \). (You can assume you have appropriate integer comparison operators, and also a modulus operator.)

(b) Try executing your program by applying it to the number 5.

(c) Give a typing derivation for the following program. What happens if you execute the program?
\[\mu p: (\text{int} \to \text{int}) \times (\text{int} \to \text{int}). (\lambda n: \text{int}.\ n + 1, \#1\ p) \]

3 References

(a) Give a typing derivation for the following program.
\[
\begin{align*}
\text{let } a: \text{int ref } &= \text{ref 4 in} \\
\text{let } b: (\text{int} \to \text{int}) \text{ ref } &= \text{ref } \lambda x: \text{int}.\ x + 38 \text{ in} \\
!b \!a
\end{align*}
\]

(b) Execute the program above for 4 small steps, to get configuration \((e, \sigma) \). What is an appropriate \(\Sigma \) such that \(\emptyset, \Sigma \vdash e: \tau \) and \(\Sigma \vdash \sigma \)?

(c) Consider a store \(\sigma = [\ell_1 \mapsto 42, \ell_2 \mapsto \lambda n: \text{int}.\ n + 1] \). What is the domain of \(\sigma \)?
Now consider a store type \(\Sigma = [\ell_1 \mapsto \text{int}, \ell_2 \mapsto \text{int} \to \text{int}] \). Note that \(\text{dom}(\sigma) = \text{dom}(\Sigma) \).
Show that \(\emptyset, \Sigma \vdash \sigma \).
4 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)

- \(\Delta A. \lambda x : A \rightarrow \text{int} \)
- \(\lambda y : \forall X. X \rightarrow X. (y [\text{int}]) \)
- \(\Delta Y. \Delta Z. \lambda f : Y \rightarrow Z. \lambda a : Y. f a \)
- \(\Delta A. \Delta B. \Delta C. \lambda f : A \rightarrow B \rightarrow C. \lambda b : B. \lambda a : A. f a b \)

(b) For each of the following types, write an expression with that type.

- \(\forall X. X \rightarrow (X \rightarrow X) \)
- \((\forall C. \forall D. C \rightarrow D) \rightarrow (\forall E. \text{int} \rightarrow E) \)
- \(\forall X. X \rightarrow (\forall Y. Y \rightarrow X) \)

5 Records and Subtyping

(a) Assume that we have a language with references and records.

(i) Write an expression with type

\[\{ \text{cell} : \text{int ref}, \text{inc} : \text{unit} \rightarrow \text{int} \} \]

such that invoking the function in the field inc will increment the contents of the reference in the field cell.

(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an expression that increments the contents of the cell twice.

(b) The following expression is well-typed (with type \(\text{int} \)). Show its typing derivation. (Note: you will need to use the subsumption rule.)

\[(\lambda x : \{ \text{dogs} : \text{int}, \text{cats} : \text{int} \}. x. \text{dogs} + x. \text{cats}) \{ \text{dogs} = 2, \text{cats} = 7, \text{mice} = 19 \} \]

(c) Suppose that \(\Gamma \) is a typing context such that

\[\Gamma(a) = \{ \text{dogs} : \text{int}, \text{cats} : \text{int}, \text{mice} : \text{int} \} \]

\[\Gamma(f) = \{ \text{dogs} : \text{int}, \text{cats} : \text{int} \} \rightarrow \{ \text{apples} : \text{int}, \text{kiwis} : \text{int} \} \]

Write an expression \(e \) that uses variables \(a \) and \(f \) and has type \(\{ \text{apples} : \text{int} \} \) under context \(\Gamma \), i.e., \(\Gamma \vdash e : \{ \text{apples} : \text{int} \} \). Write a typing derivation for it.

(d) Which of the following are subtypes of each other?

(a) \(\{ \text{dogs} : \text{int}, \text{cats} : \text{int} \} \rightarrow \{ \text{apples} : \text{int} \} \)
(b) \(\{ \text{dogs} : \text{int} \} \rightarrow \{ \text{apples} : \text{int} \} \)
(c) \(\{ \text{dogs} : \text{int} \} \rightarrow \{ \text{apples} : \text{int}, \text{kiwis} : \text{int} \} \)
(d) \(\{ \text{dogs} : \text{int}, \text{cats} : \text{int}, \text{mice} : \text{int} \} \rightarrow \{ \text{apples} : \text{int}, \text{kiwis} : \text{int} \} \)
(e) \((\{ \text{apples} : \text{int} \}) \) ref
(f) \((\{ \text{apples} : \text{int}, \text{kiwis} : \text{int} \}) \) ref
(g) \((\{ \text{kiwis} : \text{int}, \text{apples} : \text{int} \}) \) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and for pairs that aren’t subtypes, also make sure you understand).