Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages

 Products and Sums; Recursion; References; Polymorphism; Records; Subtyping

 Products and Sums; Recursion; References; Polymorphism; Records; Subtyping Section and Practice Problems

 Section and Practice Problems}

Week 7: Tue Mar 6-Fri Mar 10, 2023

1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 13§1.1).
(a) Write a program that constructs two values of type int + (int \rightarrow int), one using left injection, and one using right injection.
(b) Write a function that takes a value of type int $+(\mathbf{i n t} \rightarrow \mathbf{i n t})$ and if the value is an integer, it adds 7 to it, and if the value is a function it applies the function to 42 .
(c) Give a typing derivation for the following program.

$$
\lambda p:(\mathbf{u n i t} \rightarrow \mathbf{i n t}) \times(\mathbf{i n t} \rightarrow \mathbf{i n t}) \cdot \lambda x: \text { unit }+\mathbf{i n t} \text {. case } x \text { of } \# 1 p \mid \# 2 p
$$

(d) Write a program that uses the term in part (c) above to produce the value 42.

2 Recursion

(a) Use the $\mu x . e$ expression to write a function that takes a natural number n and returns the sum of all even natural numbers less than or equal to n. (You can assume you have appropriate integer comparison operators, and also a modulus operator.)
(b) Try executing your program by applying it to the number 5 .
(c) Give a typing derivation for the following program. What happens if you execute the program?

$$
\mu p:(\text { int } \rightarrow \mathbf{i n t}) \times(\text { int } \rightarrow \mathbf{i n t}) .(\lambda n: \text { int. } n+1, \# 1 p)
$$

3 References

(a) Give a typing derivation for the following program.

$$
\begin{aligned}
& \text { let } a: \text { int ref }=\text { ref } 4 \text { in } \\
& \text { let } b: \text { (int } \rightarrow \text { int }) \text { ref }=\text { ref } \lambda x: \text { int. } x+38 \text { in } \\
& !b!a
\end{aligned}
$$

(b) Execute the program above for 4 small steps, to get configuration $\langle e, \sigma\rangle$. What is an appropriate Σ such that $\emptyset, \Sigma \vdash e: \tau$ and $\Sigma \vdash \sigma$?
(c) Consider a store $\sigma=\left[\ell_{1} \mapsto 42, \ell_{2} \mapsto \lambda n\right.$: int. $\left.n+1\right]$. What is the domain of σ ?

Now consider a store type $\Sigma=\left[\ell_{1} \mapsto \mathbf{i n t}, \ell_{2} \mapsto \mathbf{i n t} \rightarrow \mathbf{i n t}\right]$. Note that $\operatorname{dom}(\sigma)=\operatorname{dom}(\Sigma)$.
Show that $\emptyset, \Sigma \vdash \sigma$.

4 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)

- $\Lambda A . \lambda x: A \rightarrow$ int. 42
- $\lambda y: \forall X . X \rightarrow X$. $(y$ [int] $) 17$
- $\Lambda Y . \Lambda Z . \lambda f: Y \rightarrow Z . \lambda a: Y . f a$
- $\Lambda A . \Lambda B . \Lambda C . \lambda f: A \rightarrow B \rightarrow C . \lambda b: B . \lambda a: A$. $f a b$
(b) For each of the following types, write an expression with that type.
- $\forall X . X \rightarrow(X \rightarrow X)$
- $(\forall C . \forall D . C \rightarrow D) \rightarrow(\forall E$. int $\rightarrow E)$
- $\forall X . X \rightarrow(\forall Y . Y \rightarrow X)$

5 Records and Subtyping

(a) Assume that we have a language with references and records.
(i) Write an expression with type

$$
\{\text { cell }: \text { int ref, } \text { inc }: \text { unit } \rightarrow \text { int }\}
$$

such that invoking the function in the field inc will increment the contents of the reference in the field cell.
(ii) Assuming that the variable y is bound to the expression you wrote for part (i) above, write an expression that increments the contents of the cell twice.
(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will need to use the subsumption rule.)

$$
(\lambda x:\{\text { dogs }: \text { int }, \text { cats }: \text { int }\} . x . d o g s+x . c a t s)\{\text { dogs }=2, \text { cats }=7, \text { mice }=19\}
$$

(c) Suppose that Γ is a typing context such that

$$
\begin{aligned}
& \Gamma(a)=\{\text { dogs }: \text { int, cats }: \text { int }, \text { mice }: \text { int }\} \\
& \Gamma(f)=\{\text { dogs }: \text { int, cats }: \text { int }\} \rightarrow\{\text { apples: int, kiwis }: \text { int }\}
\end{aligned}
$$

Write an expression e that uses variables a and f and has type $\{$ apples : int $\}$ under context Γ, i.e., $\Gamma \vdash e:\{$ apples: int $\}$. Write a typing derivation for it.
(d) Which of the following are subtypes of each other?
(a) $\{$ dogs:int, cats:int $\} \rightarrow\{$ apples:int $\}$
(b) $\{$ dogs:int $\} \rightarrow$ \{apples:int $\}$
(c) \{dogs:int $\} \rightarrow\{$ apples:int, kiwis:int $\}$
(d) \{dogs:int, cats:int, mice:int $\} \rightarrow$ \{apples:int, kiwis:int $\}$
(e) $(\{$ apples: int $\})$ ref
(f) (\{apples:int, kiwis:int $\}$) ref
(g) (\{kiwis:int, apples:int $\}$) ref

For each such pair, make sure you have an understanding of why one is a subtype of the other (and for pairs that aren't subtypes, also make sure you understand).

