Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Curry-Howard Isomorphism; Existential Types; Type Inference Section and Practice Problems

Week 9: Tue Mar 21–Fri Mar 24, 2023

1 Curry-Howard isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding type, and come up with a term that has the corresponding type.

For example, for the logical formula $\forall \phi. \phi \implies \phi$, the corresponding type is $\forall X. X \rightarrow X$, and a term with that type is $\Lambda X. \lambda x : X. x$. Another example: for the logical formula $\tau_1 \wedge \tau_2 \implies \tau_1$, the corresponding type is $\tau_1 \times \tau_2 \rightarrow \tau_1$, and a term with that type is $\lambda x : \tau_1 \times \tau_2. \#1 x$.

You may assume that the lambda calculus you are using for terms includes integers, functions, products, sums, universal types and existential types.

(a) $\forall \phi. \forall \psi. \phi \land \psi \implies \psi \lor \phi$

Answer: *The corresponding type is*

 $\forall X. \ \forall Y. \ X \times Y \to Y + X$

A term with this type is

 $\Lambda X. \Lambda Y. \lambda x: X \times Y. \operatorname{inl}_{Y+X} \#2 x$

(b) $\forall \phi. \forall \psi. \forall \chi. (\phi \land \psi \implies \chi) \implies (\phi \implies \chi))$

Answer: *The corresponding type is*

$$\forall X. \forall Y. \forall Z. (X \times Y \to Z) \to (X \to (Y \to Z))$$

A term with this type is

$$\Lambda X. \Lambda Y. \Lambda Z. \lambda f: X \times Y \to Z. \lambda x: X. \lambda y: Y. f(x, y)$$

Note that this term curries the function, as we saw in class.

(c) $\exists \phi. \forall \psi. \psi \implies \phi$

Answer: *The corresponding type is*

 $\exists X. \ \forall Y. \ Y \to X$

A term with this type is

pack { *int*, ΛY . λy : Y. 42} as $\exists X$. $\forall Y$. $Y \rightarrow X$

(d) $\forall \psi. \psi \implies (\forall \phi. \phi \implies \psi)$

Answer: The corresponding type is	$\forall Y. \ Y \to (\forall X. \ X \to Y)$
A term with this type is	$\Lambda Y. \lambda a : Y. \Lambda X. \lambda x : X. a$
(e) $\forall \psi. (\forall \phi. \phi \implies \psi) \implies \psi$	
Answer: A corresponding type is	$\forall Y. \ (\forall X. \ X \to Y) \to Y$
A term with this type is	

 $\Lambda Y. \lambda f: \forall X. X \to Y. f$ [int] 42

2 Existential types

(a) Write a term with type $\exists C$. { *produce* : **int** $\rightarrow C$, *consume* : $C \rightarrow$ **bool** }. Moreover, ensure that calling the function *produce* will produce a value of type C such that passing the value as an argument to *consume* will return true if and only if the argument to *produce* was 42. (Assume that you have an integer comparison operator in the language.)

Answer:

In the following solution, we use **int** as the witness type, and implement produce using the identity function, and implement consume by testing whether the value of type C (i.e., of witness type **int**) is equal to 42.

pack {*int*, { *produce* = λa : *int*. a, *consume* = λa : *int*. a = 42 }} *as* $\exists C$. { *produce* : *int* \rightarrow C, *consume* : $C \rightarrow$ *bool* }

(b) Do the same as in part (a) above, but now use a different witness type.

Answer: Here's another solution where instead we use **bool** as the witness type, and implement produce by comparing the integer argument to 42, and implement consume as the identity function.

pack {*bool*, { *produce* = λa : *int*. a = 42, *consume* = λa : *bool*. a }} *as* $\exists C$. { *produce* : *int* \rightarrow C, *consume* : $C \rightarrow$ *bool* }

(c) Assuming you have a value v of type $\exists C$. { *produce* : **int** $\rightarrow C$, *consume* : $C \rightarrow$ **bool** }, use v to "produce" and "consume" a value (i.e., make sure you know how to use the unpack $\{X, x\} = e_1$ in e_2 expression.

Answer: $unpack \{D, r\} = v$ in let d = r.produce 19 in r.consume d

3 Type Inference

- (a) Recall the constraint-based typing judgment $\Gamma \vdash e: \tau \triangleright C$. Give inference rules for products and sums. That is, for the following expressions.
 - (e_1, e_2)
 - #1 e
 - #2 e
 - $\operatorname{inl}_{\tau_1+\tau_2} e$
 - $\operatorname{inr}_{\tau_1+\tau_2} e$
 - case e_1 of $e_2 \mid e_3$

Answer:

Note that in all of the rules below except for the rule for pairs (e_1, e_2) , the types in the premise and conclusion are connected only through constraints. The reason for this is the same as in the typing rule for function application, and for addition: we may not be able to derive that the premise has the appropriate type, e.g., for a projection #1 e, we may not be able to derive that $\Gamma \vdash e: \tau_1 \times \tau_2 \triangleright C$. We instead use constraints to ensure that the derived type is appropriate.

$$\frac{\Gamma \vdash e_1 : \tau_1 \triangleright C_1 \qquad \Gamma \vdash e_2 : \tau_2 \triangleright C_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \triangleright C_1 \cup C_2}$$

$$\frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \#1 \ e: X \triangleright C \cup \{\tau \equiv X \times Y\}} X, Y \text{ are fresh } \frac{\Gamma \vdash e: \tau \triangleright C}{\Gamma \vdash \#2 \ e: Y \triangleright C \cup \{\tau \equiv X \times Y\}} X, Y \text{ are fresh }$$

$$\begin{array}{c} \Gamma \vdash e : \tau \triangleright C \\ \hline \Gamma \vdash \mathit{inl}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \triangleright C \cup \{\tau \equiv \tau_1\} \end{array} \end{array} \qquad \begin{array}{c} \Gamma \vdash \mathit{inr}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \triangleright C \cup \{\tau \equiv \tau_2\} \end{array}$$

 $\frac{\Gamma \vdash e_1 : \tau_1 \triangleright C_1 \qquad \Gamma \vdash e_2 : \tau_2 \triangleright C_2 \qquad \Gamma \vdash e_3 : \tau_3 \triangleright C_3}{\Gamma \vdash \textit{case } e_1 \textit{ of } e_2 \mid e_3 : Z \triangleright C_1 \cup C_2 \cup C_3 \cup \{\tau_1 \equiv X + Y, \tau_2 \equiv X \rightarrow Z, \tau_3 \equiv Y \rightarrow Z\}} X, Y, Z \textit{ are fresh}$

(b) Determine a set of constraints *C* and type τ such that

$$\vdash \ \lambda x : A. \ \lambda y : B. \ (\#1 \ y) + (x \ (\#2 \ y)) + (x \ 2) \ : \tau \triangleright C$$

and give the derivation for it.

Answer:

$$C = \{B \equiv X \times Y , X \equiv \textit{int}, B \equiv Z \times W , A \equiv W \rightarrow U , U \equiv \textit{int}, A \equiv \textit{int} \rightarrow V , V \equiv \textit{int}\} \\ \tau \equiv A \rightarrow B \rightarrow \textit{int}$$

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset a really really big derivation).

The expression $\#1 \ y$ requires us to add a constraint that the type of y (i.e., B) is equal to a product type for some fresh variables X and Y, thus constraint $B \equiv X \times Y$. (And expression $\#1 \ y$ has type X.)

The expression $(\#2 \ y)$ similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product type for some fresh variables Z and W, thus constraint $B \equiv Z \times W$. (And expression $\#2 \ y$ has type W.)

The expression $x \ (\#2 \ y)$ requires us to add a constraint that unifies the type of x (i.e., A) with a function type $W \rightarrow U$ (where W is the type of $\#2 \ y$ and U is a fresh type variable).

The expression x 2 requires us to add a constraint that unifies the type of x (i.e., A) with a function type **int** $\rightarrow V$ (where **int** is the type of expression 2 and V is a fresh type).

The addition operations leads us to add constraints $X \equiv int$, $U \equiv int$, and $V \equiv int$ (*i.e.*, the types of expressions $(\#1 \ y)$, $(x \ (\#2 \ y))$ and $(x \ 2)$ must all unify with int.

(c) Recall the unification algorithm from Lecture 16. What is the result of unify(C) for the set of constraints *C* from Question 3(b) above?

Answer: *The result is a substitution equivalent to*

 $[A \mapsto int \rightarrow int, B \mapsto int \times int, X \mapsto int, Y \mapsto int, Z \mapsto int, W \mapsto int, U \mapsto int, V \mapsto int]$