IMP: a simple imperative language
CS 152 (Spring 2024)

Harvard University

Tuesday, February 6, 2024

Today, we learn to

» define operational semantics for a simple
imperative language

» prove equivalence between commands
» perform arguments on proof trees

» perform induction over derivation without
counterpart over structure

IMP syntax

» arithmetic expressions

a € Aexp
» boolean expressions

b € Bexp

» commands
c € Com

IMP syntax

a:= x|nla+al|a xa
b ::= true | false | a1 < a,
c:= skip|x:=a|ca;o

| if b then ¢ else ¢,
| while b do ¢

Small-step operational semantics

Small-step operational semantics

» configurations of the form:

Small-step operational semantics

» configurations of the form:
> <aoc>

Small-step operational semantics

» configurations of the form:
> <aoc>
> < bo>

Small-step operational semantics

» configurations of the form:
> <aoc>
> < bo>
> <c,o0>

Small-step operational semantics

» configurations of the form:
> <aoc>
> < bo>
> <c,o0>

» final configurations of the form:

Small-step operational semantics

» configurations of the form:
> <aoc>
> < bo>
> <c,o0>

» final configurations of the form:
» < no>

Small-step operational semantics

» configurations of the form:
» <a o>
> < bo>
> <c,o0>

» final configurations of the form:
» < no>
> < true,o >, < false,o >

Small-step operational semantics

» configurations of the form:
» <a o>
> < bo>
> <c,o0>

» final configurations of the form:
» < no>
> < true,o >, < false,o >
» < skip,o >

3 different small-step operational
semantics relations

3 different small-step operational
semantics relations

3 different small-step operational
semantics relations

—aexp © Aexp x Store x Aexp x Store
—Bexp C Bexp x Store x Bexp x Store

—com € Com x Store x Com x Store

3 different small-step operational
semantics relations

—aexp & (Aexp x Store) x (Aexp x Store)
—Bexp C (Bexp x Store) x (Bexp x Store)

—com C (Com x Store) x (Com x Store)

3 different small-step operational
semantics relations

(Aexp x Store) —>pexp (Aexp x Store)
(Bexp x Store) —>pgexp (Bexp x Store)

(Com x Store) —>com (Com x Store)

Arithmetic expressions (1/2)

where n = o(x)

< X,0 >—< n,o >

< a0 >—< ay, o>
<a+ap,0>—<a|+ a0 >
< ap,0 >—< ay, 0 >
<n+ ayo>—<n+ a, o>

where p=n+m
<n+mo>—<p,0>

Arithmetic expressions (2/2)

< aj, 0 >—< aj, o >
< ap X ap,0 >——< a] X ap,0 >
< ap, 0 >—< ay, o >
< NnXapo>—<nxay,o>

where p=nxm
<nXmo>—<po>

Boolean expressions

< aj, 0 >—< aj,o >
<ap < a0 >—<a;<apo>

< ap, 0 >—< ay, 0 >
<n<ayo>—<n<ay,o>

where n < m

<n<m,o>—><true,o >

where n > m

<n<mo>—< false,oc >

Commands (1/3)

<ao>—<a, o>
<x:=aoc>—<x:=a,0>

< x:=n,0 >—< skip, o[x — n|] >

< c,0 >—<cp,0 >
< Q6,0 >—< ¢ 0,0 >

< skip; ¢, 0 >—< 6,0 >

Commands (2/3)

< b,og>—<b, 0>

< if bthen ¢, else ¢;,0 >—
< if b’ then ¢ else ¢, 0 >

< if true then ¢; else ¢;,0 >—< ¢1,0 >

< if false then ¢y else ¢, 0 >—< ¢, 0 >

Commands (3/3)

<whilebdoc,0 >—
< if b then (c; while b do ¢) else skip, o >

Small-step execution

< foo := 3; while foo < 4 do foo := foo + 5,0 >

< skip; while foo < 4 do foo := foo + 5,0’ > where ¢’ = o[foo — 3]
< while foo < 4 do foo := foo + 5,0’ >

< if foo < 4 then (foo := foo + 5; W) else skip, o’ >

< if 3 < 4 then (foo := foo + 5; W) else skip, o’ >

< if true then (foo := foo + 5; W) else skip, o’ >

< foo := foo + 5; while foo < 4 do foo := foo + 5,0’ >

< foo := 3 + 5; while foo < 4 do foo := foo + 5,0’ >

< foo := 8; while foo < 4 do foo := foo + 5,0’ >

< skip; while foo < 4 do foo := foo + 5,0 > where ¢’ = o'[foo — 8]
< while foo < 4 do foo := foo + 5,0"" >

< if foo < 4 then (foo := foo + 5; W) else skip, o'’ >

< if 8 < 4 then (foo := foo + 5; W) else skip, o’ >

< if false then (foo := foo + 5; W) else skip, s’ >

L

< skip, o’ >

(where W is an abbreviation for the while loop while foo < 4 do foo := foo + 5).

Large-step operational semantics

Large-step operational semantics

ilAexp - ?
ilBexp - ?

llCom g ?

Large-step operational semantics

Jaexp C Aexp x Store X Int
UBexp C Bexp x Store x Bool

lJcom € Com x Store x Store

Large-step operational semantics

Jnaexp C (Aexp x Store) x Int
UBexp C (Bexp x Store) x Bool

Jcom € (Com x Store) x Store

Large-step operational semantics

(Aexp x Store) | pexp Int
(Bexp x Store) |/gexp Bool

(Com x Store) |com Store

Arithmetic expressions

where o(x) = n

<n,o>{n <x,0>|n
< ay,o > m < ap, o> nm
where n = ny + n
<ay+a,o>|n
< ap, o> m < ap, o> nm

where n = n; X ny

<ayXa,o>|n

Boolean expressions

< true,o > true < false, o >| false

<ay, o> m < ag,0 > n
< a1 < ap,0 > true

< ap, o> m < ap, o> nm
< a1 < ap,0 >| false

where n; < np

where ny > ny

Commands (1/2)

SKIP

< skip,o >} o
<a,o>|n
< x:=a,0 > o[x — n]
< c,o0 > o < 6,0 > o

< ;6,0 >0

Asc

SEQ

< b.o > true <ci. o>l o
IF—T) \U'].7 \U'

< if bthen ¢; else ¢, 0 > ¢’

[rF < b,o > false < c,0 >0

< if bthen ¢; else ¢;,0 > ¢’

Commands (2/2)

< b,o > false
< whilebdo c,0 > o

WHILE-F

< b,o >| true <c,o>|o
< while bdo ¢,d’ >| ¢’

WHILE-T .
< while bdo ¢c,0 >| 0"

Command equivalence

The small-step operational semantics suggest that
the loop while b do ¢ should be equivalent to the
command if b then (c; while b do c¢) else skip.
Can we show that this indeed the case when the

language is defined using the above large-step
evaluation?

Equivalence of commands

Two commands ¢ and ¢’ are equivalent
written ¢ ~ ¢’
if, for any stores o and o', we have

<co>|o <= <d,o>|7.

Theorem

For all b € Bexp and ¢ € Com we have

while b do ¢

~Y

if b then (c; while b do ¢) else skip

Proof

Let W be an abbreviation for while b do c. We
want to show that for all stores o, ¢/, we have:

< W,o >|} o/ << if b then (c; W) else skip,c >| ¢

For this, we must show that both directions (=
and <=) hold. We'll show only direction =>; the
other is similar.

Assume that o and o’ are stores such that

< W,o >| ¢'. It means that there is some
derivation that proves for this fact. Inspecting the
evaluation rules, we see that there are two possible
rules whose conclusions match this fact: WHILE-F
and WHILE-T. We analyze each of them in turn.

Case WHILE-F (1/2)

The derivation must look like the following.

-1

< b,o > false
<W,o>|o0o

WHILE-F

Here, we use :1 to refer to the derivation of
< b,o > false. Note that in this case, ¢/ = 0.

Case WHILE-F (2/2)

We can use ! to derive a proof tree showing that
the evaluation of if b then (c; W) else skip yields
the same final state o:

1
: SKIP

[F < b,o >| false < skip,o0 >} o

< if b then (c; W) else skip,o >| o

Case WHILE-T (1/2)

In this case, the derivation has the following form.

-2

< b,o >| true
:3 4

<c,o>| 0" < W,d" > o

WHILE-T
<W,o>| o

Case WHILE-T (2/2)

We can use subderivations :2, :3 and :* to show

that the evaluation of if b then (c; W) else skip
yields the same final state o.

-2

< b,o >| true
:3 4

<c,o>| 0" < W,d" > o

SEQ %Yy /
[T <c,W,o>|o

< if b then (c; W) else skip,o > ¢’

Break

Add A to boolean expressions.

Contrast the design of While in small-step and
large-step. Can one style be used for the other?
Can you mix small-step and large-step?

How do you prove that while true do skip
never terminates? In small-step? In large-step?

Define and sketch proof for large-step
determinism of commands.

A extending grammar

b:=...|byAb
t .= true | false

A extending large-step semantics

<b1,0’ >~U t <b2,0 >l} b
< biAbyyo>| t3
where t3 is true
if t; and t, are true,
and false otherwise

A extending large-step semantics
(alternative left-first-sequential)

< by,0 > false
< b1 A by,0 > false

< by,0 > true < by,o > false
< by A by, 0 > false

< by, > true < by, >| true
< by A\ by,0 > true

Alternative large-step rule for While

< if b then (c;while b do ¢) else skip, o > o

< while bdo c,o >} o

Determinism

For all commands ¢ € Com and stores
o,01,0, € Store,
if <c,o0>{ 01 and < c,o > o, then 01 = 0.

Proof Sketch for Determinism

By induction on the derivation of < ¢,o >{ o;.
The inductive hypothesis P is

P(< ¢,0 > 01) = Vo, € Store,
if <c,o>| o, then o1 = 0.

We have a derivation for < ¢, o > o1, for some c,
o, and o1. Assume that the inductive hypothesis
holds for any subderivation < ¢, ¢’ >} ¢ used in
the derivation of < ¢,0 > o7.

Assume that for some o, we have < ¢, 0 > 05.
We need to show that o; = o».

Case Ir-T (1/2)

< b,o >| true < c,o0 > og
< if bthen c; else ¢;,0 > 0

Ip-T

)

and we have ¢ = if b then ¢; else ;.

The last rule used in the derivation of < ¢, 0 >{ o>
must be either IF-T or IF-F (since these are the
only rules that can be used to derive a conclusion of
the form < if b then c; else ¢, 0 >} 07). But by
the determinism of boolean expressions, we must
have < b,o >] true, and so the derivation of

< ¢,0 >|} 0o must have the following form...

Case IF-T (2/2)

< b,o >| true <c,o>|o
oo T Y 1 { o2

< if bthen ¢; else ¢;, 0 > 07

The result holds by the inductive hypothesis applied

to the derivation < ¢,0 > o1 .

Case WHILE-T (1/3)

Here we have

< b,o > true

< c,o > o

<c,o > oy

WHILE-T .
< while bdo ¢;,0 >| o1 |,

and we have ¢ = while b do ¢;. The last rule used
in the derivation of < ¢, o >} 0, must also be
WHILE-T (by the determinism of boolean
expressions), and so we have...

Case WHILE-T (2/3)

< b,o >| true

< c,o > d"

<c, 0" >| oy
< while bdo ¢, 0 > oy .

WHILE-T

By the inductive hypothesis applied to the

derivation < ¢i,0 > o’ , we have ¢/ = 0" ...

Case WHILE-T (3/3)

By another application of the inductive hypothesis,

to the derivation < c,0’ >l o1 , we have
o1 = 05 and the result holds.

Comment on Case WHILE-T

Even though the command ¢ = while b do ¢
appears in the derivation of

< while b do ¢;,0 > o1, we do not run in to
problems, as the induction is over the derivation,
not over the structure of the command.

