
IMP: a simple imperative language
CS 152 (Spring 2024)

Harvard University

Tuesday, February 6, 2024

Today, we learn to

▶ define operational semantics for a simple
imperative language

▶ prove equivalence between commands

▶ perform arguments on proof trees

▶ perform induction over derivation without
counterpart over structure

IMP syntax

▶ arithmetic expressions

a ∈ Aexp

▶ boolean expressions

b ∈ Bexp

▶ commands
c ∈ Com

IMP syntax

a ::= x | n | a1 + a2 | a1 × a2

b ::= true | false | a1 < a2

c ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:

▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >

▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >

▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:

▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >

▶ < true, σ >, < false, σ >
▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >

▶ < skip, σ >

Small-step operational semantics

▶ configurations of the form:
▶ < a, σ >
▶ < b, σ >
▶ < c , σ >

▶ final configurations of the form:
▶ < n, σ >
▶ < true, σ >, < false, σ >
▶ < skip, σ >

3 different small-step operational
semantics relations

−→Aexp ⊆ ?

−→Bexp ⊆ ?

−→Com ⊆ ?

3 different small-step operational
semantics relations

−→Aexp ⊆ ?

−→Bexp ⊆ ?

−→Com ⊆ ?

3 different small-step operational
semantics relations

−→Aexp ⊆ Aexp× Store× Aexp× Store

−→Bexp ⊆ Bexp× Store× Bexp× Store

−→Com ⊆ Com× Store× Com× Store

3 different small-step operational
semantics relations

−→Aexp ⊆ (Aexp× Store)× (Aexp× Store)

−→Bexp ⊆ (Bexp× Store)× (Bexp× Store)

−→Com ⊆ (Com× Store)× (Com× Store)

3 different small-step operational
semantics relations

(Aexp× Store) −→Aexp (Aexp× Store)

(Bexp× Store) −→Bexp (Bexp× Store)

(Com× Store) −→Com (Com× Store)

Arithmetic expressions (1/2)

< x , σ >−→< n, σ >
where n = σ(x)

< a1, σ >−→< a′1, σ >

< a1 + a2, σ >−→< a′1 + a2, σ >

< a2, σ >−→< a′2, σ >

< n + a2, σ >−→< n + a′2, σ >

< n +m, σ >−→< p, σ >
where p = n +m

Arithmetic expressions (2/2)

< a1, σ >−→< a′1, σ >

< a1 × a2, σ >−→< a′1 × a2, σ >

< a2, σ >−→< a′2, σ >

< n × a2, σ >−→< n × a′2, σ >

< n ×m, σ >−→< p, σ >
where p = n ×m

Boolean expressions

< a1, σ >−→< a′1, σ >

< a1 < a2, σ >−→< a′1 < a2, σ >

< a2, σ >−→< a′2, σ >

< n < a2, σ >−→< n < a′2, σ >

< n < m, σ >−→< true, σ >
where n < m

< n < m, σ >−→< false, σ >
where n ≥ m

Commands (1/3)

< a, σ >−→< a′, σ >

< x := a, σ >−→< x := a′, σ >

< x := n, σ >−→< skip, σ[x 7→ n] >

< c1, σ >−→< c ′1, σ
′ >

< c1; c2, σ >−→< c ′1; c2, σ
′ >

< skip; c2, σ >−→< c2, σ >

Commands (2/3)

< b, σ >−→< b′, σ >

< if b then c1 else c2, σ >−→
< if b′ then c1 else c2, σ >

< if true then c1 else c2, σ >−→< c1, σ >

< if false then c1 else c2, σ >−→< c2, σ >

Commands (3/3)

< while b do c , σ >−→
< if b then (c ;while b do c) else skip, σ >

Small-step execution

< foo := 3;while foo < 4 do foo := foo + 5, σ >

−→ < skip;while foo < 4 do foo := foo + 5, σ′ > where σ′ = σ[foo 7→ 3]

−→ < while foo < 4 do foo := foo + 5, σ′ >

−→ < if foo < 4 then (foo := foo + 5;W) else skip, σ′ >

−→ < if 3 < 4 then (foo := foo + 5;W) else skip, σ′ >

−→ < if true then (foo := foo + 5;W) else skip, σ′ >

−→ < foo := foo + 5;while foo < 4 do foo := foo + 5, σ′ >

−→ < foo := 3 + 5;while foo < 4 do foo := foo + 5, σ′ >

−→ < foo := 8;while foo < 4 do foo := foo + 5, σ′ >

−→ < skip;while foo < 4 do foo := foo + 5, σ′′ > where σ′′ = σ′[foo 7→ 8]

−→ < while foo < 4 do foo := foo + 5, σ′′ >

−→ < if foo < 4 then (foo := foo + 5;W) else skip, σ′′ >

−→ < if 8 < 4 then (foo := foo + 5;W) else skip, σ′′ >

−→ < if false then (foo := foo + 5;W) else skip, σ′′ >

−→ < skip, σ′′ >

(where W is an abbreviation for the while loop while foo < 4 do foo := foo + 5).

Large-step operational semantics

⇓Aexp ⊆ ?

⇓Bexp ⊆ ?

⇓Com ⊆ ?

Large-step operational semantics

⇓Aexp ⊆ ?

⇓Bexp ⊆ ?

⇓Com ⊆ ?

Large-step operational semantics

⇓Aexp ⊆ Aexp× Store× Int

⇓Bexp ⊆ Bexp× Store× Bool

⇓Com ⊆ Com× Store× Store

Large-step operational semantics

⇓Aexp ⊆ (Aexp× Store)× Int

⇓Bexp ⊆ (Bexp× Store)× Bool

⇓Com ⊆ (Com× Store)× Store

Large-step operational semantics

(Aexp× Store) ⇓Aexp Int

(Bexp× Store) ⇓Bexp Bool

(Com× Store) ⇓Com Store

Arithmetic expressions

< n, σ >⇓ n < x , σ >⇓ n
where σ(x) = n

< a1, σ >⇓ n1 < a2, σ >⇓ n2

< a1 + a2, σ >⇓ n
where n = n1 + n2

< a1, σ >⇓ n1 < a2, σ >⇓ n2

< a1 × a2, σ >⇓ n
where n = n1 × n2

Boolean expressions

< true, σ >⇓ true < false, σ >⇓ false

< a1, σ >⇓ n1 < a2, σ >⇓ n2

< a1 < a2, σ >⇓ true
where n1 < n2

< a1, σ >⇓ n1 < a2, σ >⇓ n2

< a1 < a2, σ >⇓ false
where n1 ≥ n2

Commands (1/2)

Skip
< skip, σ >⇓ σ

Asg
< a, σ >⇓ n

< x := a, σ >⇓ σ[x 7→ n]

Seq
< c1, σ >⇓ σ′ < c2, σ

′ >⇓ σ′′

< c1; c2, σ >⇓ σ′′

If-T
< b, σ >⇓ true < c1, σ >⇓ σ′

< if b then c1 else c2, σ >⇓ σ′

If-F
< b, σ >⇓ false < c2, σ >⇓ σ′

< if b then c1 else c2, σ >⇓ σ′

Commands (2/2)

While-F
< b, σ >⇓ false

< while b do c , σ >⇓ σ

While-T

< b, σ >⇓ true < c , σ >⇓ σ′

< while b do c , σ′ >⇓ σ′′

< while b do c , σ >⇓ σ′′

Command equivalence

The small-step operational semantics suggest that
the loop while b do c should be equivalent to the
command if b then (c ;while b do c) else skip.
Can we show that this indeed the case when the
language is defined using the above large-step
evaluation?

Equivalence of commands

Two commands c and c ′ are equivalent
written c ∼ c ′

if, for any stores σ and σ′, we have

< c , σ >⇓ σ′ ⇐⇒ < c ′, σ >⇓ σ′.

Theorem

For all b ∈ Bexp and c ∈ Com we have

while b do c

∼
if b then (c ;while b do c) else skip

Proof
Let W be an abbreviation for while b do c . We
want to show that for all stores σ, σ′, we have:

< W , σ >⇓ σ′ ⇐⇒< if b then (c ;W) else skip, σ >⇓ σ′

For this, we must show that both directions (=⇒
and ⇐=) hold. We’ll show only direction =⇒; the
other is similar.
Assume that σ and σ′ are stores such that
< W , σ >⇓ σ′. It means that there is some
derivation that proves for this fact. Inspecting the
evaluation rules, we see that there are two possible
rules whose conclusions match this fact: While-F
and While-T. We analyze each of them in turn.

Case While-F (1/2)

The derivation must look like the following.

While-F

...1

< b, σ >⇓ false

< W , σ >⇓ σ

Here, we use
...1 to refer to the derivation of

< b, σ >⇓ false. Note that in this case, σ′ = σ.

Case While-F (2/2)

We can use
...1 to derive a proof tree showing that

the evaluation of if b then (c ;W) else skip yields
the same final state σ:

If-F

...1

< b, σ >⇓ false
Skip

< skip, σ >⇓ σ

< if b then (c ;W) else skip, σ >⇓ σ

Case While-T (1/2)

In this case, the derivation has the following form.

While-T

...2

< b, σ >⇓ true
...3

< c , σ >⇓ σ′′

...4

< W , σ′′ >⇓ σ′

< W , σ >⇓ σ′

Case While-T (2/2)

We can use subderivations
...2,

...3, and
...4 to show

that the evaluation of if b then (c ;W) else skip
yields the same final state σ.

If-T

...2

< b, σ >⇓ true

Seq

...3

< c , σ >⇓ σ′′

...4

< W , σ′′ >⇓ σ′

< c ;W , σ >⇓ σ′

< if b then (c ;W) else skip, σ >⇓ σ′

Break

▶ Add ∧ to boolean expressions.

▶ Contrast the design of While in small-step and
large-step. Can one style be used for the other?
Can you mix small-step and large-step?

▶ How do you prove that while true do skip
never terminates? In small-step? In large-step?

▶ Define and sketch proof for large-step
determinism of commands.

∧ extending grammar

b ::= . . . | b1 ∧ b2
t ::= true | false

∧ extending large-step semantics

< b1, σ >⇓ t1 < b2, σ >⇓ t2

< b1 ∧ b2, σ >⇓ t3
where t3 is true
if t1 and t2 are true,
and false otherwise

∧ extending large-step semantics
(alternative left-first-sequential)

< b1, σ >⇓ false

< b1 ∧ b2, σ >⇓ false

< b1, σ >⇓ true < b2, σ >⇓ false

< b1 ∧ b2, σ >⇓ false

< b1, σ >⇓ true < b2, σ >⇓ true

< b1 ∧ b2, σ >⇓ true

Alternative large-step rule for While

< if b then (c ;while b do c) else skip, σ >⇓ σ′

< while b do c , σ >⇓ σ′

Determinism

For all commands c ∈ Com and stores
σ, σ1, σ2 ∈ Store,
if < c , σ >⇓ σ1 and < c , σ >⇓ σ2 then σ1 = σ2.

Proof Sketch for Determinism

By induction on the derivation of < c , σ >⇓ σ1.
The inductive hypothesis P is

P(< c , σ >⇓ σ1) = ∀σ2 ∈ Store,

if < c , σ >⇓ σ2 then σ1 = σ2.

We have a derivation for < c , σ >⇓ σ1, for some c ,
σ, and σ1. Assume that the inductive hypothesis
holds for any subderivation < c ′, σ′ >⇓ σ′′ used in
the derivation of < c , σ >⇓ σ1.
Assume that for some σ2 we have < c , σ >⇓ σ2.
We need to show that σ1 = σ2.

Case If-T (1/2)

If-T

...

< b, σ >⇓ true

...

< c1, σ >⇓ σ1

< if b then c1 else c2, σ >⇓ σ1 ,

and we have c ≡ if b then c1 else c2.
The last rule used in the derivation of < c , σ >⇓ σ2
must be either If-T or If-F (since these are the
only rules that can be used to derive a conclusion of
the form < if b then c1 else c2, σ >⇓ σ2). But by
the determinism of boolean expressions, we must
have < b, σ >⇓ true, and so the derivation of
< c , σ >⇓ σ2 must have the following form...

Case If-T (2/2)

If-T

...

< b, σ >⇓ true

...

< c1, σ >⇓ σ2

< if b then c1 else c2, σ >⇓ σ2

The result holds by the inductive hypothesis applied

to the derivation

...

< c1, σ >⇓ σ1 .

Case While-T (1/3)
Here we have

While-T

...

< b, σ >⇓ true
...

< c1, σ >⇓ σ′

...

< c , σ′ >⇓ σ1

< while b do c1, σ >⇓ σ1 ,

and we have c ≡ while b do c1. The last rule used
in the derivation of < c , σ >⇓ σ2 must also be
While-T (by the determinism of boolean
expressions), and so we have...

Case While-T (2/3)

While-T

...

< b, σ >⇓ true
...

< c1, σ >⇓ σ′′

...

< c , σ′′ >⇓ σ2

< while b do c1, σ >⇓ σ2 .

By the inductive hypothesis applied to the

derivation

...

< c1, σ >⇓ σ′ , we have σ′ = σ′′...

Case While-T (3/3)

By another application of the inductive hypothesis,

to the derivation

...

< c , σ′ >⇓ σ1 , we have
σ1 = σ2 and the result holds.

Comment on Case While-T

Even though the command c ≡ while b do c1
appears in the derivation of
< while b do c1, σ >⇓ σ1, we do not run in to
problems, as the induction is over the derivation,
not over the structure of the command.

