Induction
CS 1520 (Spring 2025)

Harvard University

Tuesday, February 4, 2025

Today, we learn to

» define an inductive set

» derive the induction principle of an inductive set
» prove properties of programs by induction

» use Coq to check our proofs

» believe in induction!

Expressing Program Properties

Progress

Ve € Exp. Vo € Store.
eithere € Intor de’. 0. <e,o >—< e 0’ >

Termination

Ve € Exp. Vog € Store. Jo € Store. dn € Int.
< e, 00 >—"<no>

Deterministic Result

Ve € Exp. Vog, 0,0’ € Store. Vn, n' € Int.
if <e,o0>—"<n,oc> and

< e, 00 >—"<n',0’ > then
n=n"and o =0o'.

Inductive Sets

Inductive Set: Definition

Axiom:

acA

Inductive Rule:

ag €A a, €A

acA

Grammar for Exp

er=x|n|let+e|leaxe|x=e;e

Inductive Set Exp

VAR ——— x € Var INT——n€lint
x € Exp n € Exp

et € Exp e € Exp
e+ e € Exp

ADD

et € Exp e € Exp

MuL
e1 X & € Exp

et € Exp e € Exp

AsaG x € Var

x:=e,6 € Exp

Grammar Equivalent to Inductive Set

er=x|n|let+e|leaxe|x=e;e

VAR —— x € Var INT——n€lint
x € Exp n € Exp

et € Exp e € Exp
€+ e € Exp

ADD

cE cE
MUL e Xp e xp

e X e € Exp

e € Exp e € Exp

Asc x € Var

x = e1; e € Exp

Inductive Set Exp: Example Derivation

VAR

f E INT 3¢E
ADD 00 € Exp € Exp VAR
(foo + 3) € Exp bar € Exp

MuL

(foo + 3) x bar € Exp

Inductive Set N (Natural Numbers)

The natural numbers can be inductively defined:

necN
0eN succ(n) € N

where succ(n) is the successor of n.

Inductive Set — (Step Relation)

The small-step evaluation relation — is an
inductively defined set. The definition of this set is
given by the semantic rules.

Inductive Set —* (Multi-Step Rel.)

<eo>—F<e o>

<eo>—<ée, 0 > <é, o >—*< e o >

<eo>—'<e o>

Inductive Set —* (Multi-Step Rel.)

<eo>—"<e o>

<é, o >—*<e " >
<eo>—*<ée o>

where < e,0 >—< €',0’ >

Inductive proofs

Mathematical induction

Mathematical induction

For any property P,
If

» P(0) holds

» For all natural numbers n, if P(n) holds then
P(n+ 1) holds

then for all natural numbers k, P(k) holds.

Mathematical induction

necN
0eN succ(n) € N

For any property P,
If

» P(0) holds

» For all natural numbers n, if P(n) holds then
P(n+ 1) holds

then for all natural numbers k, P(k) holds.

Mathematical inductive reasoning principle

0eN P(0)
1eN P(1)
2eN P(2)
3eN P(3)
4N P(4)

5N P(5)

Mathematical inductive reasoning principle

0eN P(0)
1eN P(1)
2eN P(2)
3eN P(3)

ken P

Induction on inductively-defined sets

Induction on inductively-defined sets

For any property P,
If

» Base cases: For each axiom

aeA,

P(a) holds.
» Inductive cases: For each inference rule

aacA ... a, €A
aeA ,

if P(a1) and ... and P(a,) then P(a).
then for all a € A, P(a) holds.

Inductive reasoning principle for set Exp

For any property P,
If

» For all variables x, P(x) holds.
» For all integers n, P(n) holds.

» For all e; € Exp and e, € Exp, if P(e;) and
P(e;) then P(e; +) holds.

» For all e; € Exp and e, € Exp, if P(e;) and
P(e;) then P(e; X &) holds.

» For all variables x and e; € Exp and e, € Exp,
if P(e1) and P(ey) then P(x := ey; &) holds.

then for all e € Exp, P(e) holds.

Case INT

INT——n€lint
n € Exp

For all integers n,
P(n) holds

Case ADD

cE cE
ADD €1 Xp & xp

e1+ e € Exp

For all e; € Exp and e, € Exp,
if P(e1) and P(e))
then P(e; + &) holds.

Inductive reasoning principle for set —
For any property P, If

VAR: For all variables x, stores o and integers n such that o(x) = n, P(< x,0 >——< n, o >) holds.

» ApD: For all integers n, m, p such that p = n+ m, and stores o, P(< n+ m, o >—< p, o >)
holds.

» MuL: For all integers n, m, p such that p = n X m, and stores o, P(< n X m, 0 >——< p, 0 >)
holds.

> Asc: For all variables x, integers n and expressions e € Exp,
P(< x:=n;e,0 >——< e, o[x — n] >) holds.

» LADD: For all expressions ey, e, e{ € Exp and stores o and o, if P(<e,o0>——< el/, o’ >)
holds then P(< e; + &2, 0 >——< €] + €, 0’ >) holds.

» RADD: For all integers n, expressions e, eé € Exp and stores o and o, if
P(< e, 0 >—< eé, o’ >) holds then P(< n+ ey, 0 >——< n+ eé, o’ >) holds.

» LMuL: For all expressions e, e, e{ € Exp and stores o and o, if P(< e,o0 >——< e{, o’ >)
holds then P(< e X e,0 >——< e X €, 0’ >) holds.

» RMuL: For all integers n, expressions e;, e2/ € Exp and stores o and o, if
P(< ey, 0 >—+< €}, 0’ >) holds then P(< n X ey, 0 >——< n X e5, o’ >) holds.

> Ascl: For all variables x, expressions ey, ep, e{ € Exp and stores o and o, if
P(< e, 0 >—< e{,0’ >) holds then P(< x := ej; e, 0 >——< x := e]; 3,0’ >) holds.

then for all < e,o0 >—< €,0’ >,
P(< e, >—< €',0’ >) holds.

Proving progress

Progress (Statement)

Progress: For each store o and expression e that is
not an integer, there exists a possible transition for
< e, o >

Ve € Exp. Vo € Store.
either e € Intor 3e’,0’. <e,o0 >—< €, 0’ >

Progress (Rephrased)

P(e) =Vo.(e € Int)V(Ie',0’. <e, o >—< €, 0 >)

Progress (Rephrased)

Ve € Exp. Vo € Store.
either e € Intor 3¢’ 0/. <e,o >—< e, 0’ >

P(e) =Vo.(e € Int)V(Ie',0’. <e, o0 >—< €, 0 >)

Example: Proving progress

by “structural induction on the expressions e

We will prove by structural induction on expressions
Exp that for all expressions e € Exp we have

P(e) =Vo.(e € Int)V(Ie,o'. <e o >—< e o >).

Consider the possible cases for e.

Proving progress: Case e = x

By the VAR axiom, we can evaluate < x,0 > in
any state: < x,0 >—< n,o >, where n = o(x).
So € = nis a witness that there exists e’ such that
< x,0 >—< €',0 >, and P(x) holds.

Proving progress: Case e = x

VAR where n = o(x)
< X,0>—< n,o >

By the VAR axiom, we can evaluate < x,c > in
any state: < x,0 >—< n,o >, where n = o(x).
So €’ = nis a witness that there exists ¢’ such that
< x,0 >—< €',0 >, and P(x) holds.

Proving progress: Case e = n

Then e € Int, so P(n) trivially holds.

Proving progress: Case e = e; + &
This is an inductive step. The inductive hypothesis
is that P holds for subexpressions e; and e,. We
need to show that P holds for e. In other words, we
want to show that P(e;) and P(ey) implies P(e).
Let's expand these properties. We know that the
following hold:

P(e) =Vo. (e; € Int) vV (3e',0'. < ey, 0 >—s< €, 0’ >)
P(e) =Vo. (e € Int) vV (3€',0'. < e&,0 >—< €, 0" >)

and we want to show:
P(e) =Vo.(e € Int)V(Ie',0'. <e,0 >—< €, 0 >)

We must inspect several subcases.

Proving progress: Case e = e + e,
e, & € Int

First, if both e; and e, are integer constants, say
er = m and e = ny, then by rule ADD we know
that the transition < ny + ny,0 >—< n,0 > is
valid, where n is the sum of n; and n,. Hence,
P(e) = P(n + ny) holds (with witness e’ = n).

Proving progress: Case e = e + e,
€1 € Int

Second, if e; is not an integer constant, then by the
inductive hypothesis P(e;) we know that

< e,0 >—< €, 0’ > for some € and ¢’. We can
then use rule LADD to conclude
<e+e,0><e+e,0 >, s0

P(e) = P(e1 + &) holds.

Proving progress: Case e = e + e,
e1 € Int, & £ Int

Third, if e; is an integer constant, say e; = ny, but
e, is not, then by the inductive hypothesis P(e;) we
know that < e,,0 >——< €’,0’ > for some €' and
o’. We can then use rule RADD to conclude
<m+e,c>—<m+e, 0 >, s0

P(e) = P(ny + &) holds.

Proving progress: Remaining cases

Case e = e X & and case e = x := ¢e;; &. Ihese
are also inductive cases, and their proofs are similar
to the previous case. [Note that if you were writing
this proof out for a homework, you should write
these cases out in full]

Incremental update

For all expressions e and stores o, if

< e, o >—<e, o > then

either o = o’ or

there is some variable x and integer n such that
o' =o[x — n].

Proving incremental update

We proceed by induction on the derivation of

< e,o>—< €, 0’ >. Suppose we have e, o, €
and ¢’ such that < e,o0 >—< €',0’ >. The
property P that we will prove of e, o, € and ¢,
which we will write as P(< e,0 >—< €',0’ >), is
that either o = ¢’ or there is some variable x and
integer n such that o/ = o[x — n|:

P(<eo>—<e€, 0 >)=
o =0V (3x € Var,n € Int. o' = o[x — n]).

Consider the cases for the derivation of
<eo>—<ée, 0 >

Proving incremental update: Case ADD

This is an axiom. Here, e=n+ mand € = p
where p is the sum of m and n, and ¢/ = 0. The
result holds immediately.

Proving incremental update: Case LADD

This is an inductive case. Here, e = ¢; + & and

€ =e+eand <e,0 >—< e, 0 > Bythe
inductive hypothesis, applied to

< e1,0 >—< ef,0’ >, we have that either 0 = ¢’
or there is some variable x and integer n such that
o' = o[x — n], as required.

Proving incremental update: Case ASG

This is an axiom. Here e = x :=n; e, and €' = e,
and ¢’ = o[x — n]. The result holds immediately.

Proving incremental update: remaining
cases

We leave the other cases (VAR, RADD, LMuL,
RMuL, MuL, and AscG1) as exercises. Seriously,
try them. Make sure you can do them. Go on.

Break

Incremental update:

For all expressions e and stores o, if
<eo>—<e, 0 > then

either o = o’ or

there is some variable x and integer n such that
o' =[x~ n].

Can you prove incremental update by structural
induction on the expression e

instead of by induction on the derivation

< e,o0>—< €, 0 > (as we just did)?

Interlude: What if induction weren’t true?

Peano Axioms

= =

0O -1 -2 =53 — ...

zero is a number.
If ais a number, the successor of a is a number.
zero is not the successor of a number.

Two numbers of which the successors are equal
are themselves equal.

(induction axiom.) If a set S of numbers
contains zero and also the successor of every
number in S, then every number is in S.

Monster Chains

0 -1 -2 =53 — ...
.= —al 530 5> al a2 - a3 — ...

.= —bl - b0 — bl b2 — b3 — ...

