More types
CS 1520 (Spring 2025)

Harvard University

Thursday, March 6, 2025

1/28

Today, we will learn about

» typing extensions to the simply-typed
lambda-calculus

2/28

Products

Syntax:
(e1, &)
#1 e
#2 e
Context:
E:=...|(E;e)|(v,E) | #1 E | #2 E

Operational semantic rules:

#1 (vi, o) —»y #2 (vi,v2) — vy

3/28

Typing of Products

Product type: 71 X

Typing rules:
[+ é1:71 M+ €. To
[+ (el, eg) T1 X T
[Fe:m X1 [Fe:m X1

[F-#len [F#2e:n

4/28

Sums

Syntax:
en=---|inlyyn, e|inr, ., e|casee of & | e
vi=---|inlyin v]inrg i, v

Context:
E:=---]inlyn, E|inr, ., E | case Eof & | e3

Operational rules:

caseinl i, vofe | es— e v

caseinr, i, vofe, | es —r e3 v

5/28

Typing of Sums

Sum type: 71 + 7

Typing rules:
e [Fe:m
[=inl 4., €11+ 7 [Finr 4., e+ 7

[Fermm+m THeg:mm—7 ThHe:im—T

[Fcaseeofe | e:T

6/28

Example Program

let f:(int + (int — int)) — int =
Aa:int + (int — int).
caseaof \y.y +1| \g.g 35in
let h:int — int = Ax:int. x + 7 in

f (inrint+(int—>int) h)

7/28

Recursion

We saw in last lecture that we could not type
recursive functions or fixed-point combinators in the
simply-typed lambda calculus. So instead of trying
(and failing) to define a fixed-point combinator in
the simply-typed lambda calculus, we add a new
primitive ux:7. e to the language. The evaluation
rules for the new primitive will mimic the behavior
of fixed-point combinators.

8/28

Recursion: Syntax

en=---|ux:T. e

Intuitively, ux:7. e is the fixed-point of the function

AXT. €.
Note that ux:7. e is not a value, regardless of

whether e is a value or not.

9/28

Recursion: Operational Semantics

There is a new axiom, but no new evaluation
contexts.

px:1. e — e{(ux:1. e)/x}

Note that we can define the letrec x:7 = e; in &
construct in terms of this new expression.

. A .
letrec x: T =eine =let x:7=pux:7. €1 In &

10/28

Recursion: Typing

[x+— 7] Fe:T

[pux:T. e:T

11/28

Example Program

FACT £ uf :int — int.
An:int.if n = 0then 1 else n x (f (n—1))

letrec fact:int — int
= An:int.if n = 0 then 1 else n x (fact (n — 1))
in ...

12/28

Non-termination?

Recall operational semantics:

px: 1. e — e{(ux:1. e)/x}
Recall typing:

[x—7]Fe:r

[ux:T. e:T

13/28

Non-termination

We can write non-terminating computations for any
type: the expression ux:7. x has type 7, and does
not terminate.

14 /28

Although the ux: 7. e expression is normally used to
define recursive functions, it can be used to find
fixed points of any type. For example, consider the
following expression.

px: (int — bool) x (int — bool).
(An:int.if n = 0 then true else ((#2 x) (n — 1)),
An:int.if n = 0 then false else ((#1 x) (n — 1)))

This expression has type

(int — bool) x (int — bool)—it is a pair of
mutually recursive functions; the first function
returns true only if its argument is even; the second
function returns true only if its argument is odd.

15/28

References: Syntax and Semantics

ex=---|refelle|e:=e |l
vi=---| ¥
E:=...|refE|IE|E:=e|v:=E

ALrLoc ¢ & dom(o)

<ref v,o >—< L o[l — v] >

DEREF o(l)=v
<W,o>—<v,0>

ASSIGN

<l:=v,0>—<v, ol —v]>

16/28

Reference Type 7 ref

» We add a new type for references: type 7 ref is
the type of a location that contains a value of
type 7.

» For example the expression ref 7 has type
int ref, since it evaluates to a location that
contains a value of type int.

» Dereferencing a location of type 7 ref results
in a value of type 7, so le has type 7 if e has
type 7 ref.

» And for assignment e; := e, if e; has type
T ref, then e, must have type 7.

17/28

References: Typing

Tiu=---| T ref
[+ e:T [+ e:T ref
[+ ref e:7 ref M=le: T

[Fe:Tref THe:T
e =e:T

18/28

References: Typing

How do we type locations?

19/28

References: Typing

Noticeable by its absence is a typing rule for
location values. What is the type of a location value
¢?7 Clearly, it should be of type 7 ref, where 7 is the
type of the value contained in location ¢. But how
do we know what value is contained in location ¢7
We could directly examine the store, but that would
be inefficient. In addition, examining the store
directly may not give us a conclusive answer!
Consider, for example, a store o and location ¢
where o(¢) = ¢; what is the type of (7

20/28

References: Store Typings

Instead, we introduce store typings to track the
types of values stored in locations. Store typings are
partial functions from locations to types. We use
metavariable ¥ to range over store typings. Our
typing relation now becomes a relation over 4
entities: typing contexts, store typings, expressions,
and types. We write [, X - e:7 when expression e
has type 7 under typing context [and store typing
2.

21/28

References: Typing

Y Fe:r X Fe:7ref
[2 ref e:7 ref X kEle:r
YXFe:tref INXFe:T
L YXkFe =e:T

Y()=r1

Y F 07 ref

22/28

References: Soundness?

So, how do we state type soundness? Our type
soundness theorem for simply-typed lambda calculus
said that if T - e:7 and e —* €’ then €’ is not
stuck. But our operational semantics for references
now has a store, and our typing judgment now has a
store typing in addition to a typing context. We
need to adapt the definition of type soundness
appropriately. To do so, we define what it means for
a store to be well-typed with respect to a typing
context.

23/28

References: Soundness Aux. Def.

Store o is well-typed with respect to typing context
[and store typing X, written [, X - o, if

dom(o) = dom(X) and for all £ € dom(o) we have
X Fo(f): 7 where £(¢) = 7.

24/28

References: Soundness Theorem

If0,>Fe:7and 0, + o and

< e, o >—*< €, 0 > then either ¢ is a value, or
there exists €’ and ¢” such that

<é, o >—< e " >.

25/28

References: Soundness

We can prove type soundness for our language using
the same strategy as for the simply-typed lambda
calculus: we use preservation and progress. The
progress lemma can be easily adapted for the
semantics and type system for references. Adapting
preservation is a little more involved, since we need
to describe how the store typing changes as the
store evolves. The rule ALLOC extends the store o
with a fresh location /¢, producing store ¢’. Since
dom(X) = dom(o) # dom(¢’), it means that we
will not have o’ well-typed with respect to typing
store 2.

26/28

References: Soundness

Since the store can increase in size during the
evaluation of the program, we also need to allow the
store typing to grow as well.

27/28

References: Preservation Lemma

If0,>Fe:Tand O, F o and
< e,0 >—< €,0’' > then there exists some
Y DY suchthat §,X' F¢€':7and 0, ¥+ o',

28/28

