
More types
CS 1520 (Spring 2025)

Harvard University

Thursday, March 6, 2025

1 / 28

Today, we will learn about

▶ typing extensions to the simply-typed
lambda-calculus

2 / 28

Products
Syntax:

(e1, e2)

#1 e

#2 e

Context:

E ::= . . . | (E , e) | (v ,E) | #1 E | #2 E

Operational semantic rules:

#1 (v1, v2) −→ v1 #2 (v1, v2) −→ v2

3 / 28

Typing of Products

Product type: τ1 × τ2
Typing rules:

Γ ⊢ e1 :τ1 Γ ⊢ e2 :τ2

Γ ⊢ (e1, e2) :τ1 × τ2

Γ ⊢ e :τ1 × τ2

Γ ⊢ #1 e :τ1

Γ ⊢ e :τ1 × τ2

Γ ⊢ #2 e :τ2

4 / 28

Sums
Syntax:

e ::= · · · | inlτ1+τ2 e | inrτ1+τ2 e | case e1 of e2 | e3
v ::= · · · | inlτ1+τ2 v | inrτ1+τ2 v

Context:

E ::= · · · | inlτ1+τ2 E | inrτ1+τ2 E | case E of e2 | e3
Operational rules:

case inlτ1+τ2 v of e2 | e3 −→ e2 v

case inrτ1+τ2 v of e2 | e3 −→ e3 v

5 / 28

Typing of Sums

Sum type: τ1 + τ2
Typing rules:

Γ ⊢ e :τ1

Γ ⊢ inlτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ2

Γ ⊢ inrτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ1 + τ2 Γ ⊢ e1 :τ1 → τ Γ ⊢ e2 :τ2 → τ

Γ ⊢ case e of e1 | e2 :τ

6 / 28

Example Program

let f : (int+ (int → int)) → int =

λa : int+ (int → int).

case a of λy . y + 1 | λg . g 35 in

let h : int → int = λx : int. x + 7 in

f (inrint+(int→int) h)

7 / 28

Recursion

We saw in last lecture that we could not type
recursive functions or fixed-point combinators in the
simply-typed lambda calculus. So instead of trying
(and failing) to define a fixed-point combinator in
the simply-typed lambda calculus, we add a new
primitive µx :τ. e to the language. The evaluation
rules for the new primitive will mimic the behavior
of fixed-point combinators.

8 / 28

Recursion: Syntax

e ::= · · · | µx :τ. e

Intuitively, µx :τ. e is the fixed-point of the function
λx :τ. e.
Note that µx :τ. e is not a value, regardless of
whether e is a value or not.

9 / 28

Recursion: Operational Semantics

There is a new axiom, but no new evaluation
contexts.

µx :τ. e −→ e{(µx :τ. e)/x}

Note that we can define the letrec x :τ = e1 in e2
construct in terms of this new expression.

letrec x :τ = e1 in e2 ≜ let x :τ = µx :τ. e1 in e2

10 / 28

Recursion: Typing

Γ[x 7→ τ] ⊢ e :τ

Γ ⊢ µx :τ. e :τ

11 / 28

Example Program

FACT ≜ µf : int → int.

λn : int. if n = 0 then 1 else n × (f (n − 1))

letrec fact : int → int

= λn : int. if n = 0 then 1 else n × (fact (n − 1))

in . . .

12 / 28

Non-termination?

Recall operational semantics:

µx :τ. e −→ e{(µx :τ. e)/x}

Recall typing:

Γ[x 7→ τ] ⊢ e :τ

Γ ⊢ µx :τ. e :τ

13 / 28

Non-termination

We can write non-terminating computations for any
type: the expression µx :τ. x has type τ , and does
not terminate.

14 / 28

Although the µx :τ. e expression is normally used to
define recursive functions, it can be used to find
fixed points of any type. For example, consider the
following expression.

µx : (int → bool)× (int → bool).

(λn : int. if n = 0 then true else ((#2 x) (n − 1)),

λn : int. if n = 0 then false else ((#1 x) (n − 1)))

This expression has type
(int → bool)× (int → bool)—it is a pair of
mutually recursive functions; the first function
returns true only if its argument is even; the second
function returns true only if its argument is odd.

15 / 28

References: Syntax and Semantics

e ::= · · · | ref e | !e | e1 := e2 | ℓ
v ::= · · · | ℓ
E ::= · · · | ref E | !E | E := e | v := E

Alloc
< ref v , σ >−→< ℓ, σ[ℓ 7→ v] >

ℓ ̸∈ dom(σ)

Deref
< !ℓ, σ >−→< v , σ >

σ(ℓ) = v

Assign
< ℓ := v , σ >−→< v , σ[ℓ 7→ v] >

16 / 28

Reference Type τ ref

▶ We add a new type for references: type τ ref is
the type of a location that contains a value of
type τ .

▶ For example the expression ref 7 has type
int ref, since it evaluates to a location that
contains a value of type int.

▶ Dereferencing a location of type τ ref results
in a value of type τ , so !e has type τ if e has
type τ ref.

▶ And for assignment e1 := e2, if e1 has type
τ ref, then e2 must have type τ .

17 / 28

References: Typing

τ ::= · · · | τ ref

Γ ⊢ e :τ

Γ ⊢ ref e :τ ref

Γ ⊢ e :τ ref

Γ ⊢ !e :τ

Γ ⊢ e1 :τ ref Γ ⊢ e2 :τ

Γ ⊢ e1 := e2 :τ

18 / 28

References: Typing

How do we type locations?

19 / 28

References: Typing

Noticeable by its absence is a typing rule for
location values. What is the type of a location value
ℓ? Clearly, it should be of type τ ref, where τ is the
type of the value contained in location ℓ. But how
do we know what value is contained in location ℓ?
We could directly examine the store, but that would
be inefficient. In addition, examining the store
directly may not give us a conclusive answer!
Consider, for example, a store σ and location ℓ
where σ(ℓ) = ℓ; what is the type of ℓ?

20 / 28

References: Store Typings

Instead, we introduce store typings to track the
types of values stored in locations. Store typings are
partial functions from locations to types. We use
metavariable Σ to range over store typings. Our
typing relation now becomes a relation over 4
entities: typing contexts, store typings, expressions,
and types. We write Γ,Σ ⊢ e :τ when expression e
has type τ under typing context Γ and store typing
Σ.

21 / 28

References: Typing

Γ,Σ ⊢ e :τ

Γ,Σ ⊢ ref e :τ ref

Γ,Σ ⊢ e :τ ref

Γ,Σ ⊢ !e :τ

Γ,Σ ⊢ e1 :τ ref Γ,Σ ⊢ e2 :τ

Γ,Σ ⊢ e1 := e2 :τ

Γ,Σ ⊢ ℓ :τ ref
Σ(ℓ) = τ

22 / 28

References: Soundness?

So, how do we state type soundness? Our type
soundness theorem for simply-typed lambda calculus
said that if Γ ⊢ e :τ and e −→∗ e ′ then e ′ is not
stuck. But our operational semantics for references
now has a store, and our typing judgment now has a
store typing in addition to a typing context. We
need to adapt the definition of type soundness
appropriately. To do so, we define what it means for
a store to be well-typed with respect to a typing
context.

23 / 28

References: Soundness Aux. Def.

Store σ is well-typed with respect to typing context
Γ and store typing Σ, written Γ,Σ ⊢ σ , if
dom(σ) = dom(Σ) and for all ℓ ∈ dom(σ) we have
Γ,Σ ⊢ σ(ℓ) :τ where Σ(ℓ) = τ .

24 / 28

References: Soundness Theorem

If ∅,Σ ⊢ e :τ and ∅,Σ ⊢ σ and
< e, σ >−→∗< e ′, σ′ > then either e ′ is a value, or
there exists e ′′ and σ′′ such that
< e ′, σ′ >−→< e ′′, σ′′ >.

25 / 28

References: Soundness

We can prove type soundness for our language using
the same strategy as for the simply-typed lambda
calculus: we use preservation and progress. The
progress lemma can be easily adapted for the
semantics and type system for references. Adapting
preservation is a little more involved, since we need
to describe how the store typing changes as the
store evolves. The rule Alloc extends the store σ
with a fresh location ℓ, producing store σ′. Since
dom(Σ) = dom(σ) ̸= dom(σ′), it means that we
will not have σ′ well-typed with respect to typing
store Σ.

26 / 28

References: Soundness

Since the store can increase in size during the
evaluation of the program, we also need to allow the
store typing to grow as well.

27 / 28

References: Preservation Lemma

If ∅,Σ ⊢ e :τ and ∅,Σ ⊢ σ and
< e, σ >−→< e ′, σ′ > then there exists some
Σ′ ⊇ Σ such that ∅,Σ′ ⊢ e ′ :τ and ∅,Σ′ ⊢ σ′.

28 / 28

