Dependent types
CS 152 (Spring 2024)

Harvard University

Thursday, April 4, 2024

1/21

Today, we will learn about

» Dependent types

» Motivation: reasoning precisely about vectors
» LF (Logical Framework) type system

2/21

Dependent types: motivation

ex=x|Mx.e|lere|n|(e,e)]|()]true] false

| init | index
vi=Ax.e|n|<wvy,...,v,>| (vi,v) | ()] true | false
— Viel.k vi=v
nit k v—<v,...,v >

index < Vi,...,Vg > i—>V/_|_1

3/21

First attempt at type system

Viel.n. TF vi:bool

< wvi,...,v, >boolvec n

[+ e :nat [+ e:bool

[+ init e; & :boolvec ¢

[- e;:boolvec e; [F e :nat

[index e; e :bool

e < €3

4/21

Issues (1/3)

In the type for init, (n : nat) — bool — boolvec n,
the first argument is somehow bound to the variable
n which occurs in the return type of the function.
What does this mean?

5/21

Issues (2/3)

The type boolvec e contains an arbitrary expression
expression e. What do the types boolvec (9 + 1) or
boolvec x mean? And what does it mean in the

proposed typing rule for index to have a side
condition e; < 37

6/21

Issues (3/3)

The expression e in the type boolvec e should be
of type nat. How do we ensure that e is limited to
expressions of type nat?

7/21

LF (Logical Framework)

Expressions e:=x|Ax:T.e|ee|n|e+ e
< va,.oo,vn >

Types 7 ::= nat | boolvec | bool | unit
|T7e|(x:m) = ™

Kinds K :=Type | (x:7) = K

8/21

Judgment for Expressions: [I e: 7

72K
Fx:7 [+ n:nat
[Fe:nat [+ e:nat
[+ e+ e:nat
For all i € 1..n. [v;:bool

x:Ttel — neN

< w,...,v, >boolvec n

[+ 7:Type Mx:7kFe:7

NEXxcre:(x:t) =7

[Fe:(x:7) =7 M- ey 7

[Fe e:7{e/x}

9/21

Judgment for Expressions: [I e: 7

/

M-e:T [F7=7":Type

[Fe:T

CONVERSION

10/21

Judgment for Types: [- 7:: K

[+ K ok

XK

[+ 7:Type [x:7+ 7 Type
[F(x:7) — 7" Type

X:Kel

Era(x:7)= K [-e:7
M7 e:K{e/x}

Nr-7:K' K=K’
70K

CONVERSION

11/21

Judgment for Kinds: ' = K ok

[7:Type [, x:7F K ok
[+ Type ok [+ (x:7) = K ok

12/21

Judgments for equivalence

» We would like to consider the types boolvec 19
and boolvec (12 + 7) to be equivalent.

» Relation means that (under context I)
expressions/types/kinds are equivalent and
have the given type/kind.

> [Fe=e:T
> TFr=ntK
> TEK =K,

13/21

Judgments for term equivalence

[=7 =7 Type xmkFe =e:T
[EAx:Tm.e = MAxim.e:(x:in) = 7
(e =e:(x:T) =7 e =67

[Fe e =e e:7'{e/x}

M x:THe:7 [-é:r
[(Ax:T.e) € =e{e/x}:7{e/x}
[Fe:(x:T)—=7 x¢&FV(e)
[(Ax:T.ex)=e:(x:7) = 7'

14 /21

Judgments for term equivalence

[Fe=e:nat [F el =é):nat

[Fe + e = e+ é:nat

n is the sum of kK and m

[+~ k+ m= n:nat

[Fe:T [Fe=6e:T
[Fe=e:T [Fe=e:T
[Fe=e:T e =e:T

[Fe =e3:T

15/21

Judgments for type equivalence

[F 7 =7 Type [x:m b1 = 75:Type
[E(x:11) = 11 = (x:12) = 75:: Type
[Frn=nt(x:7)= K Fr-e=e:7
(Fne=mne:K{e/x}

72K lFrm=nuK

lFr=712K rEn=naK

' =mnuK r'Em=muK
[F=m0K

16/21

Judgments for kind equivalence

71 =m:Type ' x:1 K=K,
e (x:m) = K1 = (x:1) = K

[K ok [K = Ko
M-K=K MK = K
MFKi=Ky TFHHK =K
MK = Ks

17/21

Equivalence Examples?

>

>

The types boolvec 42 and boolvec (35 + 7)
are equivalent.

But what about if we are in a context where
we have variables x and f of type nat and
nat — nat, respectively, where we know that
f x = 77 Should we consider the types
boolvec (f x) and boolvec 7 to be
equivalent?

18/21

Back to vectors...

» boolvec e: enforce e of type nat.
» init: (n: nat) — bool — boolvec n.
» also join: (n: nat) — (k: nat) —
boolvec n — boolvec k — boolvec (n + k)

19/21

Back to vectors...

What about the type of index?

20/21

Back to vectors...

What about the type of asPairs?
asPairs < vq,...,v, > evaluates to

(vi,(va,...(va, ())...))

21/21

