Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages
Concurrency
Lecture 26 Tuesday, April 22, 2025

1 Semantics of Concurrency

With increasingly parallel hardware, there is an corresponding increase in the need for concurrent programs
that can take advantage of this parallelism. However, writing correct concurrent programs can be difficult.
Language abstractions are a promising way to allow programmers to express concurrent computation in a
way that makes it easy (or at least, easier) for both the programmer and compiler to reasoning about the
computation.

In this lecture, we'll explore how to model concurrent execution, and investigate an effect system to
ensure that concurrent execution is deterministic despite threads potentially sharing memory.

1.1 A simple concurrent lambda calculus

Let’s consider a lambda calculus with a concurrent operator ||. That is, expression e ||ea will concurrently
evaluate e; and es. If expression e; evaluates to v; and es evaluates to vy, the result of evaluating e;||es will
be the pair (v1, v2).

We add first-class references, to make things interesting.

ex=z|n|Ar.e|ejes|er|lea|(e1,e2) | #le| #2e|refe| le|e; :==es |l

vi=n|Az.e| (vy,v9) | £

We define a small step operational semantics for the language as follows. Most of the rules are standard.
The rules for the concurrent construct, however, are new.

E:=[]|FEe|vE|(Ee)| (v,E)|#1E|#2E |refE| |[E|E:=e|v:=F

(e,0) — e/, 0")

¢ ¢ dom(o)
(Ele],o0) — (E[€'],0") {(Az.e)v,0)y — (efv/z},0) (refv, o) — U o[l — v])
(0,0) — (v, 0 o) =v U= v,0) — (v, 0l — v]) (#1 (01, 02),0) — (v1, 0
<#2 (0177)2), U> - <027 U>
(e1,0) — (e, 0") (e2,0) —> (e, 0")
(e1llez, o) —> (etllea, 0”) (e1lle2, 0) —> (erlles, ") (uilvz, o) —> {(v1,v2),0)

Note that this operational semantics is nondeterministic. There are two rules for evaluating subexpres-
sions of the parallel e; ||e2. One rule evaluates one step of the left expression e;, and the other evaluates one
step of the right expression e,. (We could equivalently have added two more evaluation contexts, E||e and
e||E.) Indeed, this nondeterminism gets at the heart of concurrent execution.

Consider the following program, which models an account bank balance, with two concurrent deposits.

let bal = ref 0in (let y = (bal := lbal 4 25||bal := !bal + 50) in !bal)

There are several possible final values that this program could evaluate to: 25, 50, and 75.

Lecture 26 Concurrency

In the absence of any synchronization mechanism, communication mechanism, or shared resource, the
concurrent evaluation of e; and e; does not allow e; and e; to communicate, or interfere with each other at
all. That is, it is pretty easy to execute e; and e; at the same time, since they cannot interfere with each other.
This is a good thing. Indeed, if we have a pure expression e in our language (i.e., no use of references) then
even though evaluation may be nondeterministic, the final result will always be the same. With side-effects,
however, the final result may differ, as shown above.

1.2 Weak memory models

In the calculus above, we have used a very simple model of shared memory, i.e., of imperatively updatable
memory shared by multiple threads. In particular, our model assumes sequential consistency: the result of
any execution is as if the memory operations of all the threads were executed in some global sequential
order, and the memory operations of each individual thread appear in this sequence in the same order they
appear in the thread.

That is, our model behaves as if there were a single global memory, and only one thread at a time
is allowed to access the memory. While this may be a reasonable model for how uniprocessor machines
execute, it is not a good description for how multi-processor machines (such as CPUs with multiple cores)
execute. Indeed, requiring sequential consistency prevents many compiler and hardware optimizations,
because it enforces a strict order among memory operations.

Let’s consider an example hardware optimization: write buffers with bypassing capabilities. Here, each
core has its own write buffer, and when it issues a write, the write goes into the buffer and the program
can continue. When the core wants to read a (different) memory location, it can “bypass” the write buffer,
i.e., it can go immediately to memory to read the memory location, even if all of the writes it issued have
not yet finished. This is a common hardware optimization used in uniprocessors, since it helps hide the
latency of write operations. But with multiple cores, this can violate sequential consistency! Suppose that a
and b are two memory locations, both containing zero, and we have one core that executes the expression
a := 1;if Ib = O then e else () and the other core executes b := 1;if la = 0 then e else (). Under sequential
consistency, at most one of these cores will execute expression e. However, with write buffers, both cores
may read 0 and both cores execute expression e!

In practice, machines do not provide sequential consistency. Instead they offer weaker guarantees. It is
important for there to be a clear specification of what guarantees are actually provided for shared memory.
These “memory models” allow programmers (including compiler writers) to reason about the correctness
of their code, and affect the performance of the system, because it restricts the kinds of optimizations that
hardware architects can provide. An ongoing area of research is in using programming language tech-
niques to formally specify these weak memory models, to enable formal and precise reasoning about the
correctness of programs and programming language abstractions. Although the specifics of these weak
memory models are beyond the scope of this course,! we will examine programming language abstractions
and techniques that enable programmers to ignore the details of the weak memory model, and deal with
higher-level abstractions. (Of course, the language implementors must then understand the appropriate
weak memory model in order to implement the abstraction correctly.)

1.3 Effect system for determinism

Let’s consider a type system that ensures that when we execute a concurrent program, the result is always
deterministic. To do so, we will introduce two new concepts: memory regions and effects.

A memory region is a set of memory locations. For our purposes, every location ¢ will belong to exactly
one region, and we will annotated locations with the region to which they belong. For example, we will
write /,, to indicate that location ¢ belongs to region «. We will assume that the programmer provides us
with region annotations at allocation sites. We are going to use regions to help us track which locations a

1For a tutorial about weak memory models, look at the paper “Shared memory consistency models: a tutorial” by S.V. Adve, S.V.
and K. Gharachorloo, IEEE Computer, vol. 29, no. 12, pp. 66-76, IEEE Computer Society, 1996. For a formalization of weak memory
models, see “Noninterference under Weak Memory Models” by H. Mantel, M. Perner and J. Sauer, in Proceedings of the 27th IEEE
Computer Security Foundations Symposium, pages 80-94, IEEE Computer Society, 2014.

Page 2 of 6

Lecture 26 Concurrency

program may read and write, in order to ensure determinism during evaluation. However, regions can be
used to help manage memory effectively (for example, deallocating an entire region at a time, instead of
individual locations), and it is often possible to infer regions of memory locations.

The modified grammar of the language, with region annotations, is as follows.

en=---|ref,el’,

V= | by

A computational effect is an observable event that occurs during computation. The canonical example is
side-effects, such as reading or writing memory during execution or performing input or output (i.e., in-
teraction with the external environment). However, depending on what we regard as “observable”, it may
also include the termination behavior of a program, or whether a computation will produce an exception
or run-time error.

Whereas a type 7 describes the final value produced by a computation e, the effects of e describe ob-
servable events during the execution of e. An effect system describes or summarizes effects that may occur
during computation. (What do you think effects mean under the Curry-Howard isomorphism?) One use
of monads is to cleanly separate effectful computation from pure (i.e., non-effectful) computation.

For our language, we are interested in memory effects: that is, what memory locations a computation
may read or write during execution. We define a type and effect system to track these effects.

We write I', ¥ - e:7 = R, W to mean that under variable context I' and store typing 3, expression e has
type 7, and that during evaluation of e, any location read will belong to a region in set R (the read effects of
e), and any locations written will belong to a region in set W (the write effects of).

We extend function types with read and write effects. A function type is now of the form 7, B A
function of this type takes as an argument a value of type 7|, and produces a value of type m; R and W
describe, respectively, the read and write effects that may occur during execution of the function.

. RW
Tu=int | = o | 71 X o | T ref,
D(z) =7 MNz—7],5Fe:7" =R W
)Y +n:int=, & | DY =] F,EI—)\xlT.etT}ﬂ:T/D@,@
DY e W e RLW, T8 eg:7 > Ry, W DY ereRW
I'Yrele: T >R VR UR W, UWh uW I''Yr+refoe:rref, =R W
I'Yre:7ref, =R W I''Yre:rref,=R, Wy I''YF ey:7>=Ry, Wy
Y+ le:teRu{a}, W DY ey :i=ey:7>Ry U Ry, Wy UWo U {a}

'Yrepimeo Ry, W, T)YFegimy> Ry, Wo

Y(4y) = 7 ref,

DY+ ty:Tref, =0, & DY (e1,e2):11 X 7o =Ry U Ry, Wy U Wh
Yremnxme=RW I''Yremn xmne=RW
LY+-#lemm=R, W I'Yr++#2e:=R W

The rule for dereferencing a location adds the appropriate region to the read effect. The rule for updating
locations adds the appropriate region to the write effect. The other rules just propagate read and write
effects as needed.

The rule for the concurrent operator (below) is the most interesting. A concurrent command e;||es is
well-typed only if the write effect of e; does not intersect with the read or write effects of e,, and vice versa.
That is, there is no region such that e; writes to that region, and e reads or writes to the same region. This
prevents data races, i.e., two threads that are concurrently accessing the same location, and one of those

Page 3 of 6

Lecture 26 Concurrency

accesses is a write.
YrFeimme>Ry, W, Wlﬁ(RQUWQ)

=J
Y Feg:im> Ry, Wy WQﬁ(Rl UWl) =0
[,Y - elles:m x o =Ry U R, Wy U Wy

What is type soundness for this type system? Intuitively, it extends our previous notion of type safety
(i.e., not getting stuck), with the notion that R and W correctly characterize the reads and writes that a pro-
gram may perform. We express this idea with the following theorem. (Note that we assume that evaluation
contexts include E|le and e||E.)

Theorem 1 (Type soundness). If |- e:7 = R, W then for all stores o and o',
e if, for some evaluation context E, we have (e, c) —* (E[W,],0"), then a € R.
e if, for some evaluation context E, we have (e, oy —* (E[ly 1= v],0”"), then c.€ W.
e ifle,0) —* (¢, o) then either ¢’ is a value or there exists ¢ and ¢” such that {¢', 0"y —> {e",0").

The theorem says that if expression e is well typed, and, during its evaluation, it dereferences a location
belonging to region «, then the type judgment had « in the read effect of e. It also says that if evaluation
updates a location ¢, then « is in the write effect of e. (We could also have tracked the allocation effect of e,
i.e., in which region e allocates new locations, but we don’t need to for our purposes.)

The following theorem says that a well-typed program is deterministic. If there are two executions, then
both executions produce the same value.

Theorem 2 (Determinism). IfT', ¥ - e:7>R, W and {e,c) —* {v1,01) and {e, o) —* {va, 02) then vy = vs.

The proof of this theorem relies on the following key lemma, which says that if a well-typed concurrent
expression e ||ez can first take a step with ey, and then take a step with e;, then we can first step e; and then
e, and end up at the same state.

Lemma 1. If for some ¥, 7, R and W we have (5,3 \~ e1||ex:7 = R, W, then for all o such that T, ¥ \ o if
(eillez, o) —> {ei|lez, o) —> {eilles, o),

then there exists o™ such that
n

(erllea, o) — (elfles, 0”) — (eiller, 0”).

Intuitively, the proof works by showing that given any two executions of a program, they are both
equivalent to a third execution in which we always fully evaluate the left side of a concurrent operator first,
before starting to evaluate the right side of a concurrent operator. By transitivity, the two executions must

be equal, and produce equal values.

2 Abstractions for Concurrency: Message passing

We just looked at a shared memory model of concurrency: different threads could concurrently access the
same memory locations. A shared memory model is commonly used in many programming languages.
However, shared memory can make it difficult to reason about the interaction between threads.

Now we consider a different model of concurrency: message passing. In this model, threads communi-
cate by sending and receiving messages over channels. Channels are first-class values: they can be created
at runtime, and used as values, including being passed as messages over channels.

Several languages use message passing, including Erlang, Go, Rust, Racket, X10, Smalltalk, F#, Concur-
rent ML (CML), and others.

Page 4 of 6

Lecture 26 Concurrency

The following grammar describes our language.

¢ € Chanld
ex=Xr:T.e|x|erea|n|er+ex| ()| pnf e
| ¢ | spawn e | newchan. | send e; to e; | recv from e

va=nlc| ()] T €

7u=int|unit|7chan | —

The language is a lambda calculus with integers, fixpoints (i.f. €), and primitives for creating threads,
and creating and using channels. Primitive spawn e creates a new thread, and expression e will execute
in the new thread. A new channel can be created with primitive newchan.. The type annotation 7 will be
used to enforce that the new channel is used to send and receive values of type 7.

Expression send e; to e2 computes e; to a value v, computes e, to a channel ¢, and sends v over channel
c. The send “blocks” until some other thread executes a recv on the same channel, and then evaluates to the
unit value (). That is, execution of the send e; {0 e, expression doesn’t complete until some thread receives
the value. Expression recv from e evaluates e to a channel ¢ and then blocks until it receives a value on
channel c. The expression evaluates to the value received.

The type system for this language expresses some aspects of the intended behavior of these new primi-
tives.

I'e:7 I'-e1:7 T'es:7chan ' e:7chan
I' - spawn e:unit T' - newchan, :7 chan I' - send e; to e;:unit T'recvfrome:r

2.1 Operational semantics

A configuration is now a list of expressions, one expression for each thread. That is, configuration e, ..., ey)
represents the concurrent execution of n threads.

We use two judgements to define the operational semantics, one to indicate how a configuration (i.e., a
list of threads) takes a step, and one to indicate how an individual thread takes a step. We use judgment
(e1,...,en) = {e€,...,e,> to indicate that configuration {es, ..., e,) can take a small step to (e}, ..., e],)
and we write e — ¢’ to indicate that thread e can take a small step to ¢’. For clarity, we present the entire
operational semantics for the language here.

We first present the inference rules for the thread judgment e — ¢’

E:=[]|FEe|vE|E+e|lv+E|send Etoe|sendvto E | recv from E

e— ¢
m=ni + no
Ele] — E[€'] Az:1.e) v —> ef{v/z} ny+ng —>m px:T. e — e{(ux:7. €)/x}
c is fresh
newchan, — ¢

We now present the rules for judgment {es,...,e,) = {e],...,e),>. As a notational convenience, we
write {e1,...,en e as shorthand for the configuration {es,...,e;_1,€,€;11,...,€ey), i.e.,, where the ith
thread is replaced with expression ¢’.

e; — ¢ e; = E[spawn e]
(€1, yen) = <{€1, ,n)ise! (e1,.. . en) == (€1, €n, €)isp[()]

e; = E;[sendvtoc] e; = Ej[recv from]

(€15 en) == €1, s €n)ics B,[()] jrE; 0]

Page 5 of 6

Lecture 26 Concurrency

The first rule for configurations states allows a thread of the configuration to take a step. This rule is
nondeterministic: any thread that can take a step is allowed to. That is, we are not modeling any scheduler
that restricts the order in which threads may execute.

The next rule describes spawning a new thread (spawn ¢), which is added to the end of the list of threads.
The last rule handles a matching send and receive on the same channel. The thread evaluating the receive
term evaluates to the value sent by the other thread. This semantics enforces blocking, in that the thread
sending cannot complete the send operation until some other thread executes a receive, and vice versa.

2.2 Example

For convenience, we write e1; es as shorthand for let = = e; in eo where x ¢ F'V (e2). (This notation is only
useful in a language with side-effects. Why?)

The follow program creates a new channel, spawns a thread that sends an integer value on the channel,
and the original thread receives the value and adds 7 to it.

let ¢ = newchani,t in
spawn (send 35 to ¢);
recv fromc + 7

The final configuration for this program will be (42, ()). Make sure you understand how this configura-
tion is derived from an initial configuration that contains a single thread that executes the program above.
What about the following program? What does it do?

let ¢ = newchanin in
spawn (uf. (send 35 to ¢; f));
recv from ¢ + recv from ¢ + recv from ¢

Note that even though there is no shared memory, the language is still non-deterministic. Consider the
following program, where 2 threads are executing a receive instruction, and one thread is executing a send,
all on the same channel. What are the possible final configurations?

let ¢ = newchanint in
spawn (3 + recv from ¢);
spawn (5 + recv from ¢);
send 15to ¢

Page 6 of 6

