
Parametric polymorphism, Records,
and Subtyping

CS 1520 (Spring 2025)

Harvard University

Thursday, March 13, 2025

1 / 81

Today, we will learn about

▶ Parametric polymorphism

▶ Records

▶ Subtyping: Covariant, Contravariant, Invariant

2 / 81

Polymorphism

3 / 81

Polymorphism

▶ Polymorph means “many forms”.

▶ Polymorphism is the ability of code to be used
on values of different types.

▶ E.g. a polymorphic function is one that can be
invoked with arguments of different types.

▶ A polymorphic datatype is one that can contain
elements of different types.

4 / 81

Polymorphism used in modern languages

5 / 81

Polymorphism used in modern languages:
Subtype polymorphism

▶ Gives a single term many types using the
subsumption rule.

▶ E.g. a function with argument τ can operate
on any value with a type that is a subtype of τ .

6 / 81

Polymorphism used in modern languages:
Ad-hoc polymorphism

▶ The code appears to be polymorphic to the programmer,
but the actual implementation is not.

▶ A typical example is overloading: using the same
function name for functions with different kinds of
parameters.

▶ Although it looks like a polymorphic function to the code
that uses it, there are actually multiple function
implementations (none being polymorphic) and the
compiler invokes the appropriate one.

7 / 81

Polymorphism used in modern languages:
Ad-hoc polymorphism

Ad-hoc polymorphism is a dispatch mechanism: the
type of the arguments is used to determine (either
at compile time or run time) which code to invoke.

8 / 81

Polymorphism used in modern languages:
Parametric polymorphism

▶ Refers to code that is written without
knowledge of the actual type of the arguments;

▶ The code is parametric in the type of the
parameters.

▶ Examples include polymorphic functions in ML,
or generics in Java 5.

9 / 81

Suppose we are working in the simply-typed lambda
calculus, and consider a “doubling” function for
integers

doubleInt ≜ λf : int → int. λx : int. f (f x)

10 / 81

doubleInt ≜ λf : int → int. λx : int. f (f x)

We could also write a double function for booleans.
Or for functions over integers. Or for any other
type...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)

doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

11 / 81

doubleInt ≜ λf : int → int. λx : int. f (f x)

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)

doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

In the simply typed lambda calculus, we need to
write a new function for each type.

12 / 81

doubleInt ≜ λf : int → int. λx : int. f (f x)

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)

doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

This violates the abstraction principle of software engineering:

Each significant piece of functionality in a program
should be implemented in just one place in the
source code. When similar functions are carried out
by distinct pieces of code, it is generally beneficial
to combine them into one by abstracting out the
varying parts.

13 / 81

Parametric polymorphism: System F

We extend the simply-typed lambda calculus with
abstraction over types, giving the polymorphic
lambda calculus, also known as System F.

14 / 81

System F

▶ A type abstraction is a new expression, written
ΛX . e, where Λ is the upper-case form of the
Greek letter lambda, and X is a type variable.

▶ We also introduce a new form of application,
called type application, or instantiation, written
e1 [τ].

15 / 81

System F

▶ When a type abstraction meets a type
application during evaluation, we substitute the
free occurrences of the type variable with the
type.

▶ Instantiation does not require the program to
keep run-time type information, or to perform
type checks at run-time

▶ It is just used as a way to statically check type
safety in the presence of polymorphism.

16 / 81

System F: Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX . e | e [τ]

v ::= n | λx :τ. e | ΛX . e

17 / 81

System F: Operational Semantics

E ::= [·] | E e | v E | E [τ]

e −→ e ′

E [e] −→ E [e ′]

β-reduction
(λx :τ. e) v −→ e{v/x}

Type-reduction
(ΛX . e) [τ] −→ e{τ/X}

18 / 81

System F: Example

In this language, the polymorphic identity function
is written as

ID ≜ ΛX . λx :X . x

19 / 81

System F:

ID ≜ ΛX . λx :X . x

We can apply the polymorphic identity function to
int, producing the identity function on integers.

(ΛX . λx :X . x) [int] −→ λx : int. x

We can apply ID to other types as easily:

(ΛX . λx :X . x) [int → int] −→ λx : int → int. x

20 / 81

System F: Type system

The type of ΛX . e is ∀X . τ , where τ is the type of
e, and may contain the type variable X . We use
this notation because for any type X , expression e
can have the type τ (which may mention X).

τ ::= int | τ1 → τ2 | X | ∀X . τ

21 / 81

Type checking expressions

▶ Typing judgments are now of the form
∆, Γ ⊢ e :τ , where ∆ is a set of type variables,
and Γ is a typing context.

▶ We also use an additional judgment ∆ ⊢ τ ok
to ensure that type τ uses only type variables
from the set ∆.

22 / 81

Type checking expressions

∆, Γ ⊢ n : int

∆ ⊢ τ ok

∆, Γ ⊢ x :τ
Γ(x) = τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ

∆, Γ ⊢ e1 e2 :τ
′

∆ ∪ {X}, Γ ⊢ e :τ

∆, Γ ⊢ ΛX . e :∀X . τ

∆, Γ ⊢ e :∀X . τ ′ ∆ ⊢ τ ok

∆, Γ ⊢ e [τ] :τ ′{τ/X}
23 / 81

Type checking expressions

∆ ⊢ X ok
X ∈ ∆

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok

∆ ⊢ ∀X . τ ok

24 / 81

Examples

Let’s consider the doubling operation again. We can
write a polymorphic doubling operation as

double ≜ ΛX . λf :X → X . λx :X . f (f x).

The type of this expression is

∀X . (X → X) → X → X

25 / 81

Example:

double ≜ ΛX . λf :X → X . λx :X . f (f x).

∀X . (X → X) → X → X

We can instantiate this on a type, and provide
arguments. For example,

double [int] (λn : int. n + 1) 7 −→ (λf : int → int. λx : int. f (f x))

(λn : int. n + 1) 7

−→∗ 9

26 / 81

Example: λx . x x

In the simply-typed lambda calculus, we had no way
of typing the expression λx . x x .

In the polymorphic lambda calculus, however, we
can type this expression:

⊢ λx :∀X . X → X . x [∀X . X → X] x

: (∀X . X → X) → (∀X . X → X)

27 / 81

Example: λx . x x

In the simply-typed lambda calculus, we had no way
of typing the expression λx . x x .

In the polymorphic lambda calculus, however, we
can type this expression:

⊢ λx :∀X . X → X . x [∀X . X → X] x

: (∀X . X → X) → (∀X . X → X)

27 / 81

Records

28 / 81

Records
▶ We have previously seen binary products, i.e.,

pairs of values.

▶ Binary products can be generalized in a
straightforward way to n-ary products, also
called tuples.

▶ For example, < 3, (), true, 42 > is a 4-ary tuple
containing an integer, a unit value, a boolean
value, and another integer.

▶ Its type is int× unit× bool× int.

29 / 81

Records

▶ Records are a generalization of tuples.

▶ We annotate each field of record with a label,
drawn from some set of labels L.

▶ For example, {foo = 32, bar = true} is a record
value with an integer field labeled foo and a
boolean field labeled bar.

▶ The type of the record value is written
{foo : int, bar :bool}.

30 / 81

Records

We extend the syntax, operational semantics, and
typing rules of the call-by-value lambda calculus to
support records.

l ∈ L
e ::= · · · | {l1 = e1, . . . , ln = en} | e.l
v ::= · · · | {l1 = v1, . . . , ln = vn}
τ ::= · · · | {l1 :τ1, . . . , ln :τn}

31 / 81

Records: Evaluation contexts

E ::= . . . | {l1 = v1, . . . , li−1 = vi−1, li = E , li+1 = ei+1, . . . , ln = en}
| E .l

32 / 81

Records: Evaluation rules

We also add a rule to access the field of a record.

{l1 = v1, . . . , ln = vn}.li −→ vi

33 / 81

Records: Typing rules

∀i ∈ 1..n. Γ ⊢ ei :τi

Γ ⊢ {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}

Γ ⊢ e :{l1 :τ1, . . . , ln :τn}
Γ ⊢ e.li :τi

34 / 81

Records: Typing rules

∀i ∈ 1..n. Γ ⊢ ei :τi

Γ ⊢ {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}

Γ ⊢ e :{l1 :τ1, . . . , ln :τn}
Γ ⊢ e.li :τi

▶ The order of labels is important:
{lat = −40, long = 175} has type {lat : int, long : int},
while {long = 175, lat = −40} has type
{long : int, lat : int}.

▶ We will consider weakening this restriction in the next
section.

35 / 81

Subtyping

▶ Subtyping is a key feature of object-oriented
languages.

▶ Subtyping was first introduced in SIMULA,
invented by Norwegian researchers Dahl and
Nygaard, and considered the first
object-oriented programming language.

36 / 81

The principle of subtyping

▶ If τ1 is a subtype of τ2 (written τ1 ≤ τ2), then a
program can use a value of type τ1 whenever it
would use a value of type τ2.

▶ If τ1 ≤ τ2, then τ1 is sometimes referred to as
the subtype, and τ2 as the supertype.

37 / 81

The principle of subtyping

This is also referred to as the “subsumption typing
rule” and can be expressed in a typing rule

Subsumption
Γ ⊢ e :τ τ ≤ τ ′

Γ ⊢ e :τ ′

38 / 81

Subtyping

The subtype relation is both reflexive and transitive.

τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

39 / 81

Subtyping for records

Let’s define the type Point to be the record type
{x : int, y : int}, that contains two fields x and y,
both integers. That is:

Point = {x : int, y : int}.

40 / 81

Subtyping for records

Let’s also define

Point3D = {x : int, y : int, z : int}

as the type of a record with three integer fields x, y
and z.

41 / 81

Subtyping for records

▶ Note that Point3D contains all of the fields of
Point, and those have the same type as in
Point.

▶ Thus it makes sense to say Point3D is a
subtype of Point: Point3D ≤ Point.

▶ Any piece of code that used a value of type
Point could instead use a value of type
Point3D.

42 / 81

We can write a subtyping rule for records.

{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}
k ≥ 0

43 / 81

▶ Why not let the corresponding fields be in a
subtyping relation?

▶ For example, if τ1 ≤ τ2 and τ3 ≤ τ4, then is
{foo : τ1, bar : τ3} a subtype of
{foo : τ2, bar : τ4}?

▶ This is the case so long as the fields of records
are immutable.

44 / 81

Subtyping for records

∀i ∈ 1..n. ∃j ∈ 1..m. l ′i = lj ∧ τj ≤ τ ′i
{l1 :τ1, . . . , lm :τm} ≤ {l ′1 :τ ′1, . . . , l ′n :τ ′n}

45 / 81

Subtyping for products

Like records, we can allow the elements of a product
to be in a subtyping relation.

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

46 / 81

Subtyping for functions

▶ Consider two function types τ1 → τ2 and
τ ′1 → τ ′2.

▶ What are the subtyping relations between τ1,
τ2, τ

′
1, and τ ′2 that should be satisfied in order

for τ1 → τ2 ≤ τ ′1 → τ ′2 to hold?

47 / 81

Subtyping for functions

Consider the following expression:

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x .

This function has type

(τ ′1 → τ ′2) → τ ′1 → τ ′2.

48 / 81

Subtyping for functions:

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x .

(τ ′1 → τ ′2) → τ ′1 → τ ′2.

Now suppose we had a function h :τ1 → τ2 such
that τ1 → τ2 ≤ τ ′1 → τ ′2. By the subtyping principle,
we should be able to give h as an argument to G ,
and G should work fine.

49 / 81

Subtyping for functions:

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x .

(τ ′1 → τ ′2) → τ ′1 → τ ′2.

h :τ1 → τ2

τ1 → τ2 ≤ τ ′1 → τ ′2

Suppose that v is a value of type τ ′1. Then G h v
will evaluate to h v , meaning that h will be passed a
value of type τ ′1.

50 / 81

Subtyping for functions:

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x .

(τ ′1 → τ ′2) → τ ′1 → τ ′2.

h :τ1 → τ2

τ1 → τ2 ≤ τ ′1 → τ ′2

Since h has type τ1 → τ2, it must be the case that
τ ′1 ≤ τ1. (What could go wrong if τ1 ≤ τ ′1?)

51 / 81

Subtyping for functions:

G ≜ λf :τ ′1 → τ ′2. λx :τ
′
1. f x .

(τ ′1 → τ ′2) → τ ′1 → τ ′2.

h :τ1 → τ2

τ1 → τ2 ≤ τ ′1 → τ ′2

Furthermore, the result type of G h v should be of
type τ ′2 according to the type of G , but h v will
produce a value of type τ2, as indicated by the type
of h. So it must be the case that τ2 ≤ τ ′2.

52 / 81

Subtyping for functions

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

53 / 81

Subtyping for functions

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

In this case subtyping for the function type is
covariant in the result type, and contravariant in the
argument type.

54 / 81

Subtyping for locations

Suppose we have a location l of type τ ref, and a
location l ′ of type τ ′ ref. What should the
relationship be between τ and τ ′ in order to have
τ ref ≤ τ ′ ref?

55 / 81

Subtyping for locations

Let’s consider the following program R , that takes a
location x of type τ ′ ref and reads from it.

R ≜ λx :τ ′ ref. !x

56 / 81

Subtyping for locations

R ≜ λx :τ ′ ref. !x

The program R has the type τ ′ ref → τ ′. Suppose
we gave R the location l as an argument. Then R l
will look up the value stored in l , and return a result
of type τ (since l is type τ ref).

57 / 81

Subtyping for locations

R ≜ λx :τ ′ ref. !x

Since R is meant to return a result of type τ ′ ref,
we thus want to have τ ≤ τ ′.

58 / 81

Subtyping for locations:

This suggests that subtyping for reference types is
covariant.
But consider the following program W , that takes a
location x of type τ ′ ref, a value y of type τ ′, and
writes y to the location.

W ≜ λx :τ ′ ref. λy :τ ′. x := y

This program has type τ ′ ref → τ ′ → τ ′.

59 / 81

Subtyping for locations:

W ≜ λx :τ ′ ref. λy :τ ′. x := y

Suppose we have a value v of type τ ′, and consider
the expression W l v . This will evaluate to l := v ,
and since l has type τ ref, it must be the case that
v has type τ , and so τ ′ ≤ τ .

60 / 81

Subtyping for locations

But this suggests that subtyping for reference types
is contravariant!

61 / 81

Subtyping for locations: Invariant
subtyping

In fact, subtyping for reference types must be
invariant: reference type τ ref is a subtype of τ ′ ref
if and only if τ ≤ τ ′ and τ ′ ≤ τ . Indeed, to be
sound, subtyping for any mutable location must be
invariant.

62 / 81

Subtyping for locations: Invariant
subtyping

In fact, subtyping for reference types must be
invariant: reference type τ ref is a subtype of τ ′ ref
if and only if τ ≤ τ ′ and τ ′ ≤ τ . Indeed, to be
sound, subtyping for any mutable location must be
invariant.

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ ref

63 / 81

Invariant subtyping

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ ref

In the premises for the rule above, why isn’t τ ≤ τ ′

and τ ′ ≤ τ equivalent to τ and τ ′ being exactly the
same?

To see why not, consider the record types
{foo : int, bar : int} and {bar : int, foo : int}.

64 / 81

Invariant subtyping

τ ≤ τ ′ τ ′ ≤ τ

τ ref ≤ τ ′ ref

In the premises for the rule above, why isn’t τ ≤ τ ′

and τ ′ ≤ τ equivalent to τ and τ ′ being exactly the
same?

To see why not, consider the record types
{foo : int, bar : int} and {bar : int, foo : int}.

64 / 81

Invariant vs Covariant subtyping: Java

Interestingly, in the Java programming language,
arrays are mutable locations but have covariant
subtyping!

65 / 81

Invariant vs Covariant subtyping: Java

Suppose that we have two classes Person and
Student such that Student extends Person (that is,
Student is a subtype of Person).

66 / 81

Invariant vs Covariant subtyping: Java

The following Java code is accepted, since an array
of Student is a subtype of an array of Person,
according to Java’s covariant subtyping for arrays.

Person[] arr = new Student[] { new Student(“Alice”) };

67 / 81

Invariant vs Covariant subtyping: Java

This is fine as long as we only read from arr. The
following code executes without any problems, since
arr[0] is a Student which is a subtype of Person.

Person p = arr[0];

68 / 81

Invariant vs Covariant subtyping: Java

However, the following code, which attempts to
update the array, has some issues.

arr[0] = new Person(“Bob”);

69 / 81

Invariant vs Covariant subtyping: Java

arr[0] = new Person(“Bob”);

Even though the assignment is well-typed, it
attempts to assign an object of type Person into an
array of Students!

In Java, this produces an ArrayStoreException,
indicating that the assignment to the array failed.

70 / 81

Back to System F

71 / 81

Metatheory
▶ Safety: Language is type-safe

▶ Need a Type Substitution Lemma

▶ Termination: All programs terminate
▶ Surprising — we saw self-application!

▶ Parametricity, a.k.a. theorems for free
▶ Example: If ⊢ e :∀X . ∀Y . (X × Y) → (Y × X),

then e is equivalent to
ΛX .ΛY . λx :(X × Y). (#2 x ,#1 x).
Every term with this type is the swap function!!

Intuition: e has no way to make an X or a Y and
it cannot tell what X or Y are or raise an
exception or diverge...

▶ Erasure: Types do not affect run-time behavior

72 / 81

Erasure

erase(x) = x

erase(n) = n

erase(λx :τ. e) = λx . erase(e)

erase(e1 e2) = erase(e1) erase(e2)

erase(ΛX . e) = λz . erase(e) where z ̸∈ FV (e)

erase(e [τ]) = erase(e)(λx . x)

73 / 81

Adequacy

For all expressions e and e ′, we have e −→∗ e ′ iff
erase(e) −→∗ erase(e ′).

74 / 81

Type Reconstruction

The type reconstruction problem asks whether, for a
given untyped λ-calculus expression e ′ there exists a
well-typed System F expression e such that
erase(e) = e ′. It was shown to be undecidable by
Wells in 1994, by showing that type checking is
undecidable for a variant of untyped λ-calculus
without annotations. See Pierce Chapter 23 for
further discussion, and restrictions of System F for
which type reconstruction is decidable.

75 / 81

Connection to reality

System F has been one of the most important
theoretical PL models since the 1970s and inspires
languages like ML.

But you have seen ML polymorphism and it looks
different. In fact, it is an implicitly typed restriction
of System F.

These two qualifications ((1) implicit, (2)
restriction) are deeply related.

76 / 81

Restrictions

▶ All types have the form ∀X1, . . . ,Xn.τ where
n ≥ 0 and τ has no ∀. (Prenex-quantification;
no first-class polymorphism.)

▶ Only let (rec) variables (e.g., x in let x = e1
in e2) can have polymorphic types. So n = 0
for function arguments, pattern variables, etc.
(Let-bound polymorphism)
▶ So cannot (always) desugar let to λ in ML

▶ In let rec f x = e1 in e2, the variable f
can have type ∀X1, . . . ,Xn.τ1 → τ2 only if
every use of f in e1 instantiates each Xi with
Xi . (No polymorphic recursion)

77 / 81

Restrictions (continued)

▶ Let variables can be polymorphic only if e1 is a
“syntactic value”
▶ A variable, constant, function definition, ...
▶ Called the “value restriction” (relaxed partially in

OCaml)

78 / 81

Why?
ML-style polymorphism can seem weird after you
have seen System F. And the restrictions do come
up in practice, though tolerable.

▶ Type inference for System F (given untyped e,
is there a System F term e ′ such that
erase(e ′) = e) is undecidable (1995)

▶ Type inference for ML with polymorphic
recursion is undecidable (1992)

▶ Type inference for ML is decidable and efficient
in practice, though pathological programs of
size O(n) and run-time O(n) can have types of
size O(22

n

)

79 / 81

Why? (continued)

▶ The type inference algorithm is unsound in the
presence of ML-style mutation, but
value-restriction restores soundness
▶ Based on unification

80 / 81

Recovering lost ground?

Extensions to the ML type system to be closer to
System F:

▶ Usually require some type annotations
▶ Are judged by:

▶ Soundness: Do programs still not get stuck?
▶ Conservatism: Do all (or most) old ML programs

still type-check?
▶ Power: Does it accept many more useful programs?
▶ Convenience: Are many new types still inferred?

81 / 81

	Type system
	Examples

