
Curry-Howard Correspondence;
Existential Types
CS 1520 (Spring 2025)

Harvard University

Tuesday, March 25, 2025

1 / 39

Today, we will learn about

▶ Curry-Howard Correspondence

▶ Existential types

2 / 39

Curry-Howard Correspondence

3 / 39

Curry-Howard Correspondence

▶ propositions as types

▶ proofs as programs

▶ proof normalization as program evaluation

4 / 39

Curry-Howard Correspondence

▶ a well-typed program demonstrates that there
is at least one value for that typed
▶ i.e. that type is inhabited
▶ a program is a proof that the type is inhabited

▶ a proof demonstrates that there is at least one
way of deriving a formula
▶ i.e. that the formula is provable by manipulating

assumptions and doing inference
▶ a proof is a program that manipulates evidence

5 / 39

Curry-Howard: Implication

T-Var
Γ ⊢ x :τ

Γ(x) = τ

T-Abs
Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′

T-App
Γ ⊢ e1 :τ → τ ′ Γ ⊢ e2 :τ

Γ ⊢ e1 e2 :τ
′

6 / 39

Curry-Howard: Implication

T-Var
Γ1, x :A, Γ2 ⊢ x :A

T-Abs
Γ, x :A ⊢ e :B

Γ ⊢ λx :A. e :A → B

T-App
Γ ⊢ e1 :A → B Γ ⊢ e2 :A

Γ ⊢ e1 e2 :B

7 / 39

Curry-Howard: Implication

T-Var
Γ1, x :A , Γ2 ⊢ x :A

T-Abs
Γ, x :A ⊢ e :B

Γ ⊢ λx :A. e :A → B

T-App
Γ ⊢ e1 :A → B Γ ⊢ e2 :A

Γ ⊢ e1 e2 :B

8 / 39

Curry-Howard: Implication

T-Var
Γ1, x :A , Γ2 ⊢ x :A

T-Abs
Γ, x :A ⊢ e :B

Γ ⊢ λx :A. e :A ⇒ B

T-App
Γ ⊢ e1 :A ⇒ B Γ ⊢ e2 :A

Γ ⊢ e1 e2 :B

9 / 39

Conjunction = Product

Γ ⊢ e1 :τ1 Γ ⊢ e2 :τ2

Γ ⊢ (e1, e2) :τ1 × τ2

Γ ⊢ e :τ1 × τ2

Γ ⊢ #1 e :τ1

Γ ⊢ e :τ1 × τ2

Γ ⊢ #2 e :τ2

10 / 39

Conjunction = Product

Γ ⊢ e1 :A Γ ⊢ e2 :B

Γ ⊢ (e1, e2) :A× B

Γ ⊢ e :A× B

Γ ⊢ #1 e :A

Γ ⊢ e :A× B

Γ ⊢ #2 e :B

11 / 39

Conjunction = Product

Γ ⊢ e1 :A Γ ⊢ e2 :B

Γ ⊢ (e1, e2) :A× B

Γ ⊢ e :A× B

Γ ⊢ #1 e :A

Γ ⊢ e :A× B

Γ ⊢ #2 e :B

12 / 39

Conjunction = Product

Γ ⊢ e1 :A Γ ⊢ e2 :B

Γ ⊢ (e1, e2) :A ∧ B

Γ ⊢ e :A ∧ B

Γ ⊢ #1 e :A

Γ ⊢ e :A ∧ B

Γ ⊢ #2 e :B

13 / 39

Disjunction = Sum

Γ ⊢ e :τ1

Γ ⊢ inlτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ2

Γ ⊢ inrτ1+τ2 e :τ1 + τ2

Γ ⊢ e :τ1 + τ2 Γ ⊢ e1 :τ1 → τ Γ ⊢ e2 :τ2 → τ

Γ ⊢ case e of e1 | e2 :τ

14 / 39

Disjunction = Sum

Γ ⊢ e :A

Γ ⊢ inlA+B e :A+ B

Γ ⊢ e :B

Γ ⊢ inrA+B e :A+ B

Γ ⊢ e :A+ B Γ ⊢ e1 :A → C Γ ⊢ e2 :B → C

Γ ⊢ case e of e1 | e2 :C

15 / 39

Disjunction = Sum

Γ ⊢ e :A

Γ ⊢ inlA+B e :A+ B

Γ ⊢ e :B

Γ ⊢ inrA+B e :A+ B

Γ ⊢ e :A+ B Γ ⊢ e1 :A → C Γ ⊢ e2 :B → C

Γ ⊢ case e of e1 | e2 :C

16 / 39

Disjunction = Sum

Γ ⊢ e :A

Γ ⊢ inlA+B e :A ∨ B

Γ ⊢ e :B

Γ ⊢ inrA+B e :A ∨ B

Γ ⊢ e :A ∨ B Γ ⊢ e1 :A ⇒ C Γ ⊢ e2 :B ⇒ C

Γ ⊢ case e of e1 | e2 :C

17 / 39

Parametric Polymorphism

18 / 39

What about False?

Ex Falso Quodlibet
Γ ⊢ ⊥
Γ ⊢ A

19 / 39

Example 1: From Formula to Type

∀ϕ1, ϕ2, ϕ3. ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ3)) ⇒ (ϕ1 ⇒ ϕ3).

∀X ,Y ,Z . ((X → Y)× (Y → Z)) → (X → Z).

ΛX ,Y ,Z . λf : (X → Y)× (Y → Z). λx :X . (#2 f) ((#1 f) x)

20 / 39

Example 1: From Formula to Type

∀ϕ1, ϕ2, ϕ3. ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ3)) ⇒ (ϕ1 ⇒ ϕ3).

∀X ,Y ,Z . ((X → Y)× (Y → Z)) → (X → Z).

ΛX ,Y ,Z . λf : (X → Y)× (Y → Z). λx :X . (#2 f) ((#1 f) x)

20 / 39

Example 1: From Formula to Type

∀ϕ1, ϕ2, ϕ3. ((ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ3)) ⇒ (ϕ1 ⇒ ϕ3).

∀X ,Y ,Z . ((X → Y)× (Y → Z)) → (X → Z).

ΛX ,Y ,Z . λf : (X → Y)× (Y → Z). λx :X . (#2 f) ((#1 f) x)

20 / 39

Example 2: From Type to Formula

λf : (τ1 × τ2) → τ3. λx :τ1. λy :τ2. f (x , y)

((τ1 × τ2) → τ3) → (τ1 → τ2 → τ3)

(ϕ1 ∧ ϕ2 ⇒ ϕ3) ⇒ (ϕ1 ⇒ (ϕ2 ⇒ ϕ3))

21 / 39

Example 2: From Type to Formula

λf : (τ1 × τ2) → τ3. λx :τ1. λy :τ2. f (x , y)

((τ1 × τ2) → τ3) → (τ1 → τ2 → τ3)

(ϕ1 ∧ ϕ2 ⇒ ϕ3) ⇒ (ϕ1 ⇒ (ϕ2 ⇒ ϕ3))

21 / 39

Example 2: From Type to Formula

λf : (τ1 × τ2) → τ3. λx :τ1. λy :τ2. f (x , y)

((τ1 × τ2) → τ3) → (τ1 → τ2 → τ3)

(ϕ1 ∧ ϕ2 ⇒ ϕ3) ⇒ (ϕ1 ⇒ (ϕ2 ⇒ ϕ3))

21 / 39

Negation

¬τ equivalent to τ ⇒ False
If ¬τ is true, then if you give me a proof of τ , I can
give you a proof of False.

22 / 39

Which are tautologies?

1. A ⇒ B ⇒ A

2. (A ⇒ B) ⇒ A ⇒ B

3. (A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C

4. A ∨ ¬A
5. ¬¬(A ∨ ¬A)
6. A ⇒ ¬¬A
7. ¬¬A ⇒ A

23 / 39

Which are tautologies?

1. First axiom of sentential logic: A ⇒ B ⇒ A

2. Modus Ponens: (A ⇒ B) ⇒ A ⇒ B

3. Second axiom of sentential logic:
(A ⇒ B ⇒ C) ⇒ (A ⇒ B) ⇒ A ⇒ C

4. Excluded Middle (does not hold in intuitionistic
logic, only in classical logic): A ∨ ¬A

5. Excluded Middle is not wrong (holds in
intuitionistic logic too): ¬¬(A ∨ ¬A)

6. If A is right, then it’s not wrong: A ⇒ ¬¬A
7. If A is not wrong, then it’s right (does not hold

in intuitionistic logic): ¬¬A ⇒ A

24 / 39

Double negation

▶ Double negation ¬¬P reads as “P is not
wrong”.

▶ In classical logic, ¬¬P is equivalent to P , and
“it’s not wrong” is equivalent to “it’s true”.

▶ In intuitionistic logic, P implies ¬¬P but the
converse does not hold (no double negation
elimination). Hence, “it’s not wrong” is weaker
than “it’s true”.

▶ However, the intuitionistic “it’s not wrong”
behaves much like the classical “it’s true”. In
particular, excluded middle is not wrong!

25 / 39

Continuations

Answer: “return type” of continuations
Continuation type: τ → Answer.
Assume Answer is uninhabited – like False.
Then, continuation corresponds to negation!

26 / 39

Continuation-Passing Style

The type of CPS[[e]] is
([[τ]] → Answer) → Answer.
This type corresponds to ¬(¬[[τ]]).
Double negation.

27 / 39

Proof Normalization is Program
Evaluation

28 / 39

β-reduction corresponds to cut elimination
...

Γ, x :A ⊢ e :B

Γ ⊢ λx :A. e :A → B

...

Γ ⊢ e2 :A

Γ ⊢ (λx :A. e)e2 :B

becomes

...

Γ ⊢ e2 :A
...

Γ ⊢ e{e2/x} :B

29 / 39

β-reduction corresponds to cut elimination
...

Γ, x :A ⊢ e :B

Γ ⊢ λx :A. e :A ⇒ B

...

Γ ⊢ e2 :A

Γ ⊢ (λx :A. e)e2 :B

becomes

...

Γ ⊢ e2 :A
...

Γ ⊢ e{e2/x} :B

30 / 39

Cuts

A cut is an intermediate statement (a lemma) that
we prove even though it is not a subformula of the
final statement (the theorem).

Example (A proof with a cut). We show that P ,
then P ⇒ Q, and we conclude Q.
P is a cut.

Example (A proof without cuts). We show P , then
Q, and we conclude P ∧ Q.
P and Q are subformulas of P ∧ Q and
therefore not cuts.

31 / 39

Curry-Howard Correspondence

32 / 39

Existential Types

33 / 39

Syntax

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2
| { l1 = e1, . . . , ln = en } | e.l
| pack {τ1, e} as ∃X . τ2
| unpack {X , x} = e1 in e2

v ::= n | λx :τ. e | { l1 = v1, . . . , ln = vn }
| pack {τ1, v} as ∃X . τ2

τ ::= int | τ1 → τ2 | { l1 :τ1, . . . , ln :τn } | X | ∃X . τ

34 / 39

Example: Counter ADT

let counterADT =
pack
{int, { new = 0,

get = λi : int. i ,
inc = λi : int. i + 1 } }

as
∃Counter. { new : Counter,

get : Counter → int,
inc : Counter → Counter }

in . . .

35 / 39

Example: Counter ADT, continued

unpack {C , x} = counterADT in let y :C = x .new in

x .get (x .inc (x .inc y))

36 / 39

Operational Semantics

E ::= · · · | pack {τ1,E} as ∃X . τ2
| unpack {X , x} = E in e

unpack {X , x} = (pack {τ1, v} as ∃Y . τ2) in e −→ e{v/x}{τ1/X}

37 / 39

Typing rules

∆, Γ ⊢ e :τ2{τ1/X}
∆, Γ ⊢ pack {τ1, e} as ∃X . τ2 :∃X . τ2

∆, Γ ⊢ e1 :∃X . τ1 X ̸∈ ∆

∆ ∪ {X}, Γ, x :τ1 ⊢ e2 :τ2 ∆ ⊢ τ2 ok

∆, Γ ⊢ unpack {X , x} = e1 in e2 :τ2

∆ ∪ {X} ⊢ τ ok

∆ ⊢ ∃X . τ ok

38 / 39

Exisentials encoded with Universals

∃X . τ

=∀Y .(∀X .τ → Y) → Y

pack {τ0, e} as ∃X . τ

=ΛY . λf : (∀X .τ → Y). f [τ0]e

unpack {X , x} = e1 in e2
=e1 [τ2] (ΛX . λx : τ11. e2).

39 / 39

