Substructural Type Systems
CS 1520 (Spring 2025)

Harvard University

Tuesday, April 1, 2025

1/40

But first, some code

int foo() {
int #*scratch = malloc(sizeof (int) * 10);
if (error) {

return 1;
}
// do some computation
free(scratch);
return result;

2/40

But first, some code

int foo() {

int *scratch = malloc(sizeof (int) * 10);

if (error) {
// Oops! forgot to free scratch!
return 1;

+

// do some computation

free(scratch);

return result;

3/40

But first, some code

int *bar() {
int *x = malloc(sizeof (int));
int *y = Xx;

free(y);

return *x;

+

4/40

But first, some code

int *bar() {

int *x = malloc(sizeof(int));
int *y = Xx;

free(y);

// Pointer to freed memory still alive!
return *x;

+

5/40

» Not limited to memory management!

» File handles
» Network connections
» Many more...

6/40

Driving Question

» How can we use logic to represent resources?

7/40

Natural deduction

» Natural deduction is a kind of proof calculus
that can be used to formalize mathematical
logic

» Meant to be the natural way to reason about truth!

» Ai,...,A,F B means whenever formulas A; to
A, are true, then formula B is true

» Eg.,p,gFg=(p=1r)
» Can define inference rules for the logic, e.g.,

[-AAB
A

8/40

Natural deduction inference rules
(propositional logic)

B A
Al A [FB= A

[FB=A AFB r=A AFB

[AFA AFAAB

r-AAB r-AAB
A TFB

9/40

Structural inference rules

» Structural inference rules manipulate the
assumptions (i.e., formulas to the left of)

» Allow us to treat list of formulas like a set.

10/40

Structural inference rule (1/3)

A B AFC
LB,AAFC

EXCHANGE

11/40

Structural inference rule (2/3)

A AAFB
A AFB

CONTRACTION

12/40

Structural inference rule (3/3)

AFB
A AFB

WEAKENING

13/40

Substructural logics

» If we drop any structural inference rule, we
have a substructural logic

14 /40

Substructural logics: affine logic

» Keep Exchange and Weakening, drop
Contraction

» Every assumption must be used at most once

A B,AFC
ILB,AAFC

EXCHANGE

AFB
A AFB

WEAKENING

15/40

Substructural logics: linear logic

» Keep Exchange but drop Weakening and
Contraction: linear logic

» Every assumption must be used exactly once

A B,AFC
ILB,AAFC

EXCHANGE

16 /40

Curry-Howard Correspondence

17/40

Curry-Howard Correspondence

» Exchange
[x:m,y:mAFe:T A B AFC

[y, x:m,AFe:T NB,AAFC

» Contraction
Mx:m,x:1,AFe:7 A AAFB

Mx:1,AFe:7 NNAAFB
» Weakening
MAFe:T rAFB

rA
FxrAFer PR FAAFB

18/40

Affine type system

» Every variable is used at most once

» Affine type systems drop Contraction (but keep
Exchange and Weakening)

EXCHANGE [x:m,y:m, AFe:T

Ly:m,x:m, Ak e:T

MAFe:T _
WEAKENING xnotinl, A
Mx:7 At e:r

19/40

Relevant type system

» Every variable is used at least once

» Relevant type systems drop Weakening (but
keep Contraction and Exchange)

EXCHANGE [x:m,y:m, AFe:T

Ly:m,x:m, Ak e:T
Mx:m,x:1,AFe:7
M x:7,AFe:7

CONTRACTION

20/40

Linear type system

» Every variable is used exactly once

» Linear type systems drop Contraction and
Weakening (but keep Exchange)

[x:m,y:m, AFe:T

EXCHANGE
Ly:m,x:m, Ak e:T

21/40

Ordered type system

» Every variable is used exactly once, in order

» Ordered type systems drop Weakening,
Contraction, and Exchange

22/40

Linear lambda calculus

» Explore linear type system in lambda calculus
» Type system will track use of objects

» A linear object must be used exactly once (and
implementation could, e.g., deallocate object
after use)

» Will also have unrestricted objects that can be
used many times

23/40

Syntax

g ::=lin | un

ex=x|qgblqg(e,e)|gixiT.e|e e
| if e1 then e; else e3 | splite; asx, yine

b € {true, false}

24 /40

Type system

mu=bool |1y X7 |1 —
Tu=qT

=0T x:7

25 /40

Inference rules

» Maintain two invariants:
1. linear variables are used exactly once on each

control flow path
2. unrestricted data structures may not contain linear

data structures

26 /40

Utility functions (1/2)

» Split context [into two pieces
D=000

F:F10F2

[x:un m= (1, x:un 7)o ([, x:un)

F:F10F2

Mx:linm = (I, x:linm)ol,

F:F10F2

[x:linm=T10 (2, x:lin7)

27 /40

Utility functions (2/2)

» Determine whether type or context can be used
in linear setting
» un(7) if and only if 7 = un 7.
» lin(7) if and only if 7 =un 7 or 7 = lin 7.
» g(I) if and only if for all (x:7) € T, we have g(7).

28/40

Inference rules (1/2)

un(l1, 1) un(T)
[, x:7, [= x:7 '+q b:q bool
Fl - € :.q bool

[Fe: [Fes:
2m @ T 1208 T r_ror,

[+ if e then e else e3: 7

MEe:n TaFe:mn q(n) q(m)
['Fgq (61,®)1q (71772)

r:|_10|_2

Inference rules (2/2)

r1|_61:q(7'1><7'2) rg,XZTl,yZTQ}_EQZT

: : [=T10l,
[+ splitepasx,yine:T

q(l) M x:7ke:7
N-qgM\:T.e:qm— 1

MEe:qgr— 7 HEe:T

e e:7 F=Tel

30/40

Example 1

lin Ax:lin bool.
(lin Af :un (un bool — lin bool). lin true)
(un Ay :un bool. x)

31/40

Example 2

lin Ax:lin bool.
(lin Afzun (un bool — lin bool).lin (f (un true), f (un true)))
(un Ay :un bool. x)

32/40

Operational semantics

» Use store-based semantics (to emphasize
reclaiming memory)

» Type system ensures that a location is never
accessed after it is freed.

p:i=b|Ax:T.e| ({1,0r)

vi=gqgp

E:=[]|ifEtheneyelsees|q(E,e)|q({E)
| splitEasx,yine| Ee|lE

<eo>—<eée, 0 >
< Ele],o0 >—< E[€'], 0’ >

33/40

iy e e e Ty Te Rl G

o if g=un
l)=qt =
o(f)=qtrue o {a\z if ¢ = lin

IF-TRUE _
(if £ then e else e, 0) — (e, 0’)

o if g =un
¢) = q fal =
o(£) = q false ’ {a\é if g = lin

IF-FALSE _
(if £ then e else e;,0) — (&, 0”)

34/40

o if g =un
0)=q (t,¢ =
)=alt) o {a\z if g = lin

SPLIT (splitlasx,yine, o) — (e{l1/x}{l2/y},0")

o if g =un
) = AX:T. I =
olh)=gqrcre o {J\El if g =lin

APP (0 02, 0) — (e{la/x},)

35/40

Type Soundness

If - e:7 and (e, () —* (€¢/,0) then either
» €' is not stuck or

» 3/ such that ¢ =/ and
VI" € dom(o) and ¢ reachable(/, o), dp such
that o(/') = un p.

36/40

Substructural type systems in the wild

» Affine types model move semantics

37/40

Substructural type systems in the wild

» Rust uses move semantics to prevent
use-after-free

fn bar() -> Box<i32> {
let x: Box<i32> = Box::new(20);
let y = x;

drop(y) ;
// Error: use of moved wvalue: "z
return Xx;

~

+

38/40

Substructural type systems in the wild

» Relevant types can be very frustrating to use in
practice

» Think of a very pedantic "unused variable” checker

39/40

Substructural type systems in the wild

int search(int needle,
int[] haystack, int n
) {

int result

_1,

for (int 1 =0 ; 1 <n ; 1+=1) {
if haystack[i] == needle {
// Error: Unused assignment to “resu
result = 1i;
break;
+
}
+

40 /40

