
Substructural Type Systems
CS 1520 (Spring 2025)

Harvard University

Tuesday, April 1, 2025

1 / 40



But first, some code

int foo() {
int *scratch = malloc(sizeof(int) * 10);

if (error) {

return 1;

}

// do some computation

free(scratch);

return result;

}

2 / 40



But first, some code

int foo() {
int *scratch = malloc(sizeof(int) * 10);

if (error) {

// Oops! forgot to free scratch!

return 1;

}

// do some computation

free(scratch);

return result;

}

3 / 40



But first, some code

int *bar() {
int *x = malloc(sizeof(int));

int *y = x;

free(y);

return *x;

}

4 / 40



But first, some code

int *bar() {
int *x = malloc(sizeof(int));

int *y = x;

free(y);

// Pointer to freed memory still alive!

return *x;

}

5 / 40



▶ Not limited to memory management!
▶ File handles
▶ Network connections
▶ Many more...

6 / 40



Driving Question

▶ How can we use logic to represent resources?

7 / 40



Natural deduction

▶ Natural deduction is a kind of proof calculus
that can be used to formalize mathematical
logic
▶ Meant to be the natural way to reason about truth!

▶ A1, . . . ,An ⊢ B means whenever formulas A1 to
An are true, then formula B is true

▶ E.g., p,¬q ⊢ q ⇒ (p ⇒ r)

▶ Can define inference rules for the logic, e.g.,

Γ ⊢ A ∧ B

Γ ⊢ A

8 / 40



Natural deduction inference rules
(propositional logic)

A ⊢ A

Γ,B ⊢ A

Γ ⊢ B ⇒ A

Γ ⊢ B ⇒ A ∆ ⊢ B

Γ,∆ ⊢ A

Γ ⊢ A ∆ ⊢ B

Γ,∆ ⊢ A ∧ B

Γ ⊢ A ∧ B

Γ ⊢ A

Γ ⊢ A ∧ B

Γ ⊢ B

9 / 40



Structural inference rules

▶ Structural inference rules manipulate the
assumptions (i.e., formulas to the left of ⊢)

▶ Allow us to treat list of formulas like a set.

10 / 40



Structural inference rule (1/3)

Exchange
Γ,A,B ,∆ ⊢ C

Γ,B ,A,∆ ⊢ C

11 / 40



Structural inference rule (2/3)

Contraction
Γ,A,A,∆ ⊢ B

Γ,A,∆ ⊢ B

12 / 40



Structural inference rule (3/3)

Weakening
Γ,∆ ⊢ B

Γ,A,∆ ⊢ B

13 / 40



Substructural logics

▶ If we drop any structural inference rule, we
have a substructural logic

14 / 40



Substructural logics: affine logic
▶ Keep Exchange and Weakening, drop

Contraction
▶ Every assumption must be used at most once

Exchange
Γ,A,B ,∆ ⊢ C

Γ,B ,A,∆ ⊢ C

Contraction
Γ,A,A,∆ ⊢ B

Γ,A,∆ ⊢ B

Weakening
Γ,∆ ⊢ B

Γ,A,∆ ⊢ B

15 / 40



Substructural logics: linear logic
▶ Keep Exchange but drop Weakening and

Contraction: linear logic
▶ Every assumption must be used exactly once

Exchange
Γ,A,B ,∆ ⊢ C

Γ,B ,A,∆ ⊢ C

Contraction
Γ,A,A,∆ ⊢ B

Γ,A,∆ ⊢ B

Weakening
Γ,∆ ⊢ B

Γ,A,∆ ⊢ B

16 / 40



Curry-Howard Correspondence

17 / 40



Curry-Howard Correspondence

▶ Exchange
Γ, x :τ1, y :τ2,∆ ⊢ e :τ

Γ, y :τ2, x :τ1,∆ ⊢ e :τ

Γ,A,B ,∆ ⊢ C

Γ,B ,A,∆ ⊢ C

▶ Contraction
Γ, x :τ, x :τ,∆ ⊢ e :τ ′

Γ, x :τ,∆ ⊢ e :τ ′
Γ,A,A,∆ ⊢ B

Γ,A,∆ ⊢ B

▶ Weakening
Γ,∆ ⊢ e :τ

Γ, x :τ ′,∆ ⊢ e :τ
x ̸∈ Γ,∆

Γ,∆ ⊢ B

Γ,A,∆ ⊢ B

18 / 40



Affine type system

▶ Every variable is used at most once

▶ Affine type systems drop Contraction (but keep
Exchange and Weakening)

Exchange
Γ, x :τ1, y :τ2,∆ ⊢ e :τ

Γ, y :τ2, x :τ1,∆ ⊢ e :τ

Contraction
Γ, x :τ, x :τ,∆ ⊢ e :τ ′

Γ, x :τ,∆ ⊢ e :τ ′

Weakening
Γ,∆ ⊢ e :τ

Γ, x :τ ′,∆ ⊢ e :τ
x not in Γ,∆

19 / 40



Relevant type system

▶ Every variable is used at least once

▶ Relevant type systems drop Weakening (but
keep Contraction and Exchange)

Exchange
Γ, x :τ1, y :τ2,∆ ⊢ e :τ

Γ, y :τ2, x :τ1,∆ ⊢ e :τ

Contraction
Γ, x :τ, x :τ,∆ ⊢ e :τ ′

Γ, x :τ,∆ ⊢ e :τ ′

Weakening
Γ,∆ ⊢ e :τ

Γ, x :τ ′,∆ ⊢ e :τ
x not in Γ,∆

20 / 40



Linear type system

▶ Every variable is used exactly once

▶ Linear type systems drop Contraction and
Weakening (but keep Exchange)

Exchange
Γ, x :τ1, y :τ2,∆ ⊢ e :τ

Γ, y :τ2, x :τ1,∆ ⊢ e :τ

Contraction
Γ, x :τ, x :τ,∆ ⊢ e :τ ′

Γ, x :τ,∆ ⊢ e :τ ′

Weakening
Γ,∆ ⊢ e :τ

Γ, x :τ ′,∆ ⊢ e :τ
x not in Γ,∆

21 / 40



Ordered type system

▶ Every variable is used exactly once, in order

▶ Ordered type systems drop Weakening,
Contraction, and Exchange

Exchange
Γ, x :τ1, y :τ2,∆ ⊢ e :τ

Γ, y :τ2, x :τ1,∆ ⊢ e :τ

Contraction
Γ, x :τ, x :τ,∆ ⊢ e :τ ′

Γ, x :τ,∆ ⊢ e :τ ′

Weakening
Γ,∆ ⊢ e :τ

Γ, x :τ ′,∆ ⊢ e :τ
x not in Γ,∆

22 / 40



Linear lambda calculus

▶ Explore linear type system in lambda calculus

▶ Type system will track use of objects

▶ A linear object must be used exactly once (and
implementation could, e.g., deallocate object
after use)

▶ Will also have unrestricted objects that can be
used many times

23 / 40



Syntax

q ::= lin | un

e ::= x | q b | q (e1, e2) | q λx :τ. e | e1 e2
| if e1 then e2 else e3 | split e1 as x , y in e2

b ∈ {true, false}

24 / 40



Type system

π ::= bool | τ1 × τ2 | τ1 → τ2

τ ::= q π

Γ ::= ∅ | Γ, x :τ

25 / 40



Inference rules

▶ Maintain two invariants:
1. linear variables are used exactly once on each

control flow path
2. unrestricted data structures may not contain linear

data structures

26 / 40



Utility functions (1/2)
▶ Split context Γ into two pieces

∅ = ∅ ◦ ∅

Γ = Γ1 ◦ Γ2
Γ, x :un π = (Γ1, x :un π) ◦ (Γ2, x :un π)

Γ = Γ1 ◦ Γ2
Γ, x : lin π = (Γ1, x : lin π) ◦ Γ2

Γ = Γ1 ◦ Γ2
Γ, x : lin π = Γ1 ◦ (Γ2, x : lin π)

27 / 40



Utility functions (2/2)

▶ Determine whether type or context can be used
in linear setting
▶ un(τ) if and only if τ = un π.
▶ lin(τ) if and only if τ = un π or τ = lin π.
▶ q(Γ) if and only if for all (x :τ) ∈ Γ, we have q(τ).

28 / 40



Inference rules (1/2)

un(Γ1, Γ2)

Γ1, x :τ, Γ2 ⊢ x :τ

un(Γ)

Γ ⊢ q b :q bool

Γ1 ⊢ e1 :q bool

Γ2 ⊢ e2 :τ Γ2 ⊢ e3 :τ

Γ ⊢ if e1 then e2 else e3 :τ
Γ = Γ1 ◦ Γ2

Γ1 ⊢ e1 :τ1 Γ2 ⊢ e2 :τ2 q(τ1) q(τ2)

Γ ⊢ q (e1, e2) :q (τ1, τ2)
Γ = Γ1 ◦ Γ2

29 / 40



Inference rules (2/2)

Γ1 ⊢ e1 :q (τ1 × τ2) Γ2, x :τ1, y :τ2 ⊢ e2 :τ

Γ ⊢ split e1 as x , y in e2 :τ
Γ = Γ1 ◦ Γ2

q(Γ) Γ, x :τ ⊢ e :τ ′

Γ ⊢ q λx :τ. e :q τ → τ ′

Γ1 ⊢ e1 :q τ → τ ′ Γ2 ⊢ e2 :τ

Γ ⊢ e1 e2 :τ
′ Γ = Γ1 ◦ Γ2

30 / 40



Example 1

lin λx : lin bool.

(lin λf :un (un bool → lin bool). lin true)

(un λy :un bool. x)

31 / 40



Example 2

lin λx : lin bool.

(lin λf :un (un bool → lin bool). lin (f (un true), f (un true)))

(un λy :un bool. x)

32 / 40



Operational semantics
▶ Use store-based semantics (to emphasize

reclaiming memory)

▶ Type system ensures that a location is never
accessed after it is freed.

p ::= b | λx :τ. e | (ℓ1, ℓ2)
v ::= q p

E ::= [·] | if E then e2 else e3 | q (E , e) | q (ℓ,E )

| splitE as x , y in e | E e | ℓ E

< e, σ >−→< e ′, σ′ >

< E [e], σ >−→< E [e ′], σ′ >
33 / 40



Val
⟨v , σ⟩ −→ ⟨ℓ, σ[ℓ 7→ v ]⟩

ℓ ̸∈ dom(σ)

If-True

σ(ℓ) = q true σ′ =

{
σ if q = un

σ \ ℓ if q = lin

⟨if ℓ then e1 else e2, σ⟩ −→ ⟨e1, σ′⟩

If-False

σ(ℓ) = q false σ′ =

{
σ if q = un

σ \ ℓ if q = lin

⟨if ℓ then e1 else e2, σ⟩ −→ ⟨e2, σ′⟩

34 / 40



Split

σ(ℓ) = q (ℓ1, ℓ2) σ′ =

{
σ if q = un

σ \ ℓ if q = lin

⟨split ℓ as x , y in e, σ⟩ −→ ⟨e{ℓ1/x}{ℓ2/y}, σ′⟩

App

σ(ℓ1) = q λx :τ. e σ′ =

{
σ if q = un

σ \ ℓ1 if q = lin

⟨ℓ1 ℓ2, σ⟩ −→ ⟨e{ℓ2/x}, σ′⟩

35 / 40



Type Soundness

If ⊢ e :τ and ⟨e, ∅⟩ −→∗ ⟨e ′, σ⟩ then either

▶ e ′ is not stuck or

▶ ∃l such that e ′ = l and
∀l ′ ∈ dom(σ) and ̸∈ reachable(l , σ), ∃p such
that σ(l ′) = un p.

36 / 40



Substructural type systems in the wild

▶ Affine types model move semantics

37 / 40



Substructural type systems in the wild

▶ Rust uses move semantics to prevent
use-after-free

fn bar() -> Box<i32> {
let x: Box<i32> = Box::new(20);

let y = x;

drop(y);

// Error: use of moved value: `x`

return x;

}

38 / 40



Substructural type systems in the wild

▶ Relevant types can be very frustrating to use in
practice
▶ Think of a very pedantic ”unused variable” checker

39 / 40



Substructural type systems in the wild
int search(int needle,

int[] haystack, int n

) {

int result = -1;

for (int i = 0 ; i < n ; i += 1) {

if haystack[i] == needle {

// Error: Unused assignment to `result`

result = i;

break;

}

}

}

40 / 40


