Algebraic Structures
CS 152 (Spring 2025)

Harvard University

Thursday, April 2, 2025

1/23

Today, we will learn about

» Type constructors
» Lists, Options

» Algebraic structures

» Monoids
» Functors
» Monads

» Algebraic structures in Haskell

2/23

Algebraic Structures

» An abstract set of things (the carrier)
» An abstract set of operations over those things
» A set of laws that govern those operations

3/23

Algebraic Structures: Examples

» Numbers over addition and multiplication
» Lists over append
» Types over type constructors

4/23

Type Constructors

» A type constructor creates new types from
existing types

5/23

Type Constructors

» A type constructor creates new types from
existing types
» E.g., product types, sum types, reference types,
function types, ...

5/23

Lists

» Assume CBV A-calc with booleans, fixpoint
operator ux:7. e

Expressions e:x=---|][]
| e 1 e | isempty? e | head e

| tail e
Values vi=-|[] v = w
Types To=---| 7 list
Eval contexts E:=---|E = e|v i E

| isempty? E | head E | tail E

6/23

List inference rules

isempty? [] — true isempty? v; 1 v, — false

head vi = vv — g tail vi @ v — »y

He:T [e:7 list
[=[]:7 list e e list

[e:7 list [e:7 list [e:7 list
[+ isempty? e:bool [head e: 7 [tail e:7 list

append £ uf : 7 list — 7 list — 7 list. A\a:7 list. A\b: 7 list.
if isempty? a then b else (head a) :: (f (tail a) b)

7/23

Options

Expressions e ::=--- | none | some e
| case e; of &5 | &3

Values v i=--- | none | some v

Types T :=---| 7 option

Eval contexts E ::=---|some E | case Eof e | &

8/23

Option as syntactic sugar

9/23

Option as syntactic sugar

» the type 7 option as syntactic sugar for the
sum type unit 4+ 7

9/23

Option as syntactic sugar

» the type 7 option as syntactic sugar for the
sum type unit + 7

» none as syntactic sugar for inlynit+r ()

9/23

Option as syntactic sugar

» the type 7 option as syntactic sugar for the
sum type unit + 7

» none as syntactic sugar for inlynit+r ()
» some e as syntactic sugar for inrynit- €

9/23

/oo of Generic Structures

» We like to deal with generic structures when
possible, as a means of abstraction

» This is true both in proofs and in programs!
» A few common structures come up a lot

10/23

Monoids

A monoid is a set T with a distinguished element
called the unit (which we will denote u) and a single
operation multiply : T — T — T that satisfies the
following laws.

Vx € T. multiply x u=x Left id.
Vx € T. multiply u x = x Right id.

Vx,y,z € T. multiply x (multiply y z) =
multiply (multiply x y) z Assoc.

11/23

Monoid examples

» Integers with multiplication.
» Integers with addition.

» Strings with concatenation.
» Lists with append.

12/23

Do Types Form a Monoid?

» What is the carrier?
» What is the multiply operation?
» What is the unit?

13/23

Do Types Form a Monoid? Yes!

» What is the carrier? The set of all types

» What is the multiply operation? The product
type constructor

» What is the unit? The unit type

14/23

Functors

A functor associates with each set A a set T4; has a
single operation map: (A — B) — Ta — Tp that
takes a function from A to B and an element of T4
and returns an element of Tpg

Vfe A— B,ge B— C.
(map f); (map g) = map (f; g) Distributivity
map (Aa:A.a) = (Aa: Tx. a) |dentity

15/23

Functor examples

» Options.
» Lists.

16/23

Monads

17/23

Monads

A monad associate each set A with a set M4. Two
operations:

» return: A — My
» bind : My — (A — Mg) — Mg

18/23

Monad laws

Vx e A f € A— Mg.
bind (return x) f = f x Left id.
Yam € My. bind am return = am Right id.
Yam € MA,fEA—>MB,f68—>Mc.
bind (bind am f) g =
bind am (Aa:A. bind (f a) g) Assoc.

19/23

Option monad

return:7 — 7 option
bind: 7y option — (71 — 7 option) — 7, option

20/23

Algebraic structures in Haskell

» https://www.haskell.org/
» Pure functional language

» Call-by-need evaluation (aka lazy evaluation)

» Type classes: mechanism for ad hoc
polymorphism
» Declares common functions that all types within
class have

» We will use them to express algebraic structures in
Haskell

21/23

Why Monads?

vvyyy

vy

Monads are very useful in Haskell
Haskell is pure: no side effects
But side effects useful!

Monadic types cleanly and clearly express
side effects computation may have

Monads force computation into sequence

Monads as type classes capture underlying
structure of computation

» Reusable readable code that works for any monad

22/23

Further Reading

» Monadic Parsing in Haskell (Functional Pearl)
https://www.cs.nott.ac.uk/~pszgmh/pearl.pdf

» Free Monads
https://okmij.org/ftp/Computation/
free-monad.html

23/23

https://www.cs.nott.ac.uk/~pszgmh/pearl.pdf
https://okmij.org/ftp/Computation/free-monad.html
https://okmij.org/ftp/Computation/free-monad.html

