
Algebraic Structures
CS 152 (Spring 2025)

Harvard University

Thursday, April 2, 2025

1 / 23

Today, we will learn about

▶ Type constructors
▶ Lists, Options

▶ Algebraic structures
▶ Monoids
▶ Functors
▶ Monads

▶ Algebraic structures in Haskell

2 / 23

Algebraic Structures

▶ An abstract set of things (the carrier)

▶ An abstract set of operations over those things

▶ A set of laws that govern those operations

3 / 23

Algebraic Structures: Examples

▶ Numbers over addition and multiplication

▶ Lists over append

▶ Types over type constructors

4 / 23

Type Constructors

▶ A type constructor creates new types from
existing types

▶ E.g., product types, sum types, reference types,
function types, ...

5 / 23

Type Constructors

▶ A type constructor creates new types from
existing types
▶ E.g., product types, sum types, reference types,

function types, ...

5 / 23

Lists

▶ Assume CBV λ-calc with booleans, fixpoint
operator µx :τ. e

Expressions e ::= · · · | []
| e1 :: e2 | isempty? e | head e

| tail e
Values v ::= · · · | [] | v1 :: v2
Types τ ::= · · · | τ list

Eval contexts E ::= · · · | E :: e | v :: E

| isempty? E | head E | tail E

6 / 23

List inference rules

isempty? [] −→ true isempty? v1 :: v2 −→ false

head v1 :: v2 −→ v1 tail v1 :: v2 −→ v2

Γ ⊢ [] :τ list

Γ ⊢ e1 :τ Γ ⊢ e2 :τ list

Γ ⊢ e1 :: e2 :τ list

Γ ⊢ e :τ list

Γ ⊢ isempty? e :bool

Γ ⊢ e :τ list

Γ ⊢ head e :τ

Γ ⊢ e :τ list

Γ ⊢ tail e :τ list

append ≜ µf :τ list → τ list → τ list. λa :τ list. λb :τ list.

if isempty? a then b else (head a) :: (f (tail a) b)
7 / 23

Options

Expressions e ::= · · · | none | some e

| case e1 of e2 | e3
Values v ::= · · · | none | some v

Types τ ::= · · · | τ option

Eval contexts E ::= · · · | some E | case E of e2 | e3

8 / 23

Option as syntactic sugar

▶ the type τ option as syntactic sugar for the
sum type unit+ τ

▶ none as syntactic sugar for inlunit+τ ()

▶ some e as syntactic sugar for inrunit+τ e

9 / 23

Option as syntactic sugar

▶ the type τ option as syntactic sugar for the
sum type unit+ τ

▶ none as syntactic sugar for inlunit+τ ()

▶ some e as syntactic sugar for inrunit+τ e

9 / 23

Option as syntactic sugar

▶ the type τ option as syntactic sugar for the
sum type unit+ τ

▶ none as syntactic sugar for inlunit+τ ()

▶ some e as syntactic sugar for inrunit+τ e

9 / 23

Option as syntactic sugar

▶ the type τ option as syntactic sugar for the
sum type unit+ τ

▶ none as syntactic sugar for inlunit+τ ()

▶ some e as syntactic sugar for inrunit+τ e

9 / 23

Zoo of Generic Structures

▶ We like to deal with generic structures when
possible, as a means of abstraction

▶ This is true both in proofs and in programs!

▶ A few common structures come up a lot

10 / 23

Monoids

A monoid is a set T with a distinguished element
called the unit (which we will denote u) and a single
operation multiply : T → T → T that satisfies the
following laws.

∀x ∈ T . multiply x u = x Left id.

∀x ∈ T . multiply u x = x Right id.

∀x , y , z ∈ T . multiply x (multiply y z) =

multiply (multiply x y) z Assoc.

11 / 23

Monoid examples

▶ Integers with multiplication.

▶ Integers with addition.

▶ Strings with concatenation.

▶ Lists with append.

12 / 23

Do Types Form a Monoid?

▶ What is the carrier?

▶ What is the multiply operation?

▶ What is the unit?

13 / 23

Do Types Form a Monoid? Yes!

▶ What is the carrier? The set of all types

▶ What is the multiply operation? The product
type constructor

▶ What is the unit? The unit type

14 / 23

Functors

A functor associates with each set A a set TA; has a
single operation map : (A → B) → TA → TB that
takes a function from A to B and an element of TA

and returns an element of TB

∀f ∈ A → B , g ∈ B → C .

(map f); (map g) = map (f ; g) Distributivity

map (λa :A. a) = (λa :TA. a) Identity

15 / 23

Functor examples

▶ Options.

▶ Lists.

16 / 23

Monads

17 / 23

Monads

A monad associate each set A with a set MA. Two
operations:

▶ return : A → MA

▶ bind : MA → (A → MB) → MB

18 / 23

Monad laws

∀x ∈ A, f ∈ A → MB .

bind (return x) f = f x Left id.

∀am ∈ MA. bind am return = am Right id.

∀am ∈ MA, f ∈ A → MB , f ∈ B → MC .

bind (bind am f) g =

bind am (λa :A. bind (f a) g) Assoc.

19 / 23

Option monad

return :τ → τ option

bind:τ1 option → (τ1 → τ2 option) → τ2 option

20 / 23

Algebraic structures in Haskell

▶ https://www.haskell.org/

▶ Pure functional language

▶ Call-by-need evaluation (aka lazy evaluation)
▶ Type classes: mechanism for ad hoc

polymorphism
▶ Declares common functions that all types within

class have
▶ We will use them to express algebraic structures in

Haskell

21 / 23

Why Monads?

▶ Monads are very useful in Haskell

▶ Haskell is pure: no side effects

▶ But side effects useful!

▶ Monadic types cleanly and clearly express
side effects computation may have

▶ Monads force computation into sequence
▶ Monads as type classes capture underlying

structure of computation
▶ Reusable readable code that works for any monad

22 / 23

Further Reading

▶ Monadic Parsing in Haskell (Functional Pearl)
https://www.cs.nott.ac.uk/~pszgmh/pearl.pdf

▶ Free Monads
https://okmij.org/ftp/Computation/

free-monad.html

23 / 23

https://www.cs.nott.ac.uk/~pszgmh/pearl.pdf
https://okmij.org/ftp/Computation/free-monad.html
https://okmij.org/ftp/Computation/free-monad.html

