
Dependent types
CS 1520 (Spring 2025)

Harvard University

Thursday, April 10, 2025

1 / 21

Today, we will learn about

▶ Dependent types
▶ Motivation: reasoning precisely about vectors
▶ LF (Logical Framework) type system

2 / 21

Dependent types: motivation

e ::= x | λx . e | e1 e2 | n | (e1, e2) | () | true | false
| init | index

v ::= λx . e | n |< v1, . . . , vn >| (v1, v2) | () | true | false

init k v −→< v1, . . . , vk >
∀i ∈ 1..k . vi = v

index < v1, . . . , vk > i −→ vi+1

3 / 21

First attempt at type system

∀i ∈ 1..n. Γ ⊢ vi :bool

Γ ⊢< v1, . . . , vn >:boolvec n

Γ ⊢ e1 :nat Γ ⊢ e2 :bool

Γ ⊢ init e1 e2 :boolvec e1

Γ ⊢ e1 :boolvec e3 Γ ⊢ e2 :nat

Γ ⊢ index e1 e2 :bool
e2 ≤ e3

4 / 21

Issues (1/3)

In the type for init, (n : nat) → bool → boolvec n,
the first argument is somehow bound to the variable
n which occurs in the return type of the function.
What does this mean?

5 / 21

Issues (2/3)

The type boolvec e contains an arbitrary expression
expression e. What do the types boolvec (9 + 1) or
boolvec x mean? And what does it mean in the
proposed typing rule for index to have a side
condition e1 ≤ e3?

6 / 21

Issues (3/3)

The expression e in the type boolvec e should be
of type nat. How do we ensure that e is limited to
expressions of type nat?

7 / 21

LF (Logical Framework)

Expressions e ::= x | λx :τ. e | e1 e2 | n | e1 + e1
|< v1, . . . , vn >| . . .

Types τ ::= nat | boolvec | bool | unit
| τ e | (x :τ1) → τ2

Kinds K ::= Type | (x :τ) ⇒ K

8 / 21

Judgment for Expressions: Γ ⊢ e :τ
Γ ⊢ τ ::K

Γ ⊢ x :τ
x :τ ∈ Γ

Γ ⊢ n :nat
n ∈ N

Γ ⊢ e1 :nat Γ ⊢ e2 :nat

Γ ⊢ e1 + e2 :nat

For all i ∈ 1..n. Γ ⊢ vi :bool

Γ ⊢< v1, . . . , vn >:boolvec n

Γ ⊢ τ ::Type Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e : (x :τ) → τ ′

Γ ⊢ e1 : (x :τ
′) → τ Γ ⊢ e2 :τ

′

Γ ⊢ e1 e2 :τ{e2/x}
9 / 21

Judgment for Expressions: Γ ⊢ e :τ

Conversion
Γ ⊢ e :τ ′ Γ ⊢ τ ≡ τ ′ ::Type

Γ ⊢ e :τ

10 / 21

Judgment for Types: Γ ⊢ τ ::K

Γ ⊢ K ok

Γ ⊢ X ::K
X :K ∈ Γ

Γ ⊢ τ ::Type Γ, x :τ ⊢ τ ′ ::Type

Γ ⊢ (x :τ) → τ ′ ::Type

Γ ⊢ τ :: (x :τ ′) ⇒ K Γ ⊢ e :τ ′

Γ ⊢ τ e ::K{e/x}

Conversion
Γ ⊢ τ ::K ′ Γ ⊢ K ≡ K ′

Γ ⊢ τ ::K

11 / 21

Judgment for Kinds: Γ ⊢ K ok

Γ ⊢ Type ok

Γ ⊢ τ ::Type Γ, x :τ ⊢ K ok

Γ ⊢ (x :τ) ⇒ K ok

12 / 21

Judgments for equivalence

▶ We would like to consider the types boolvec 19
and boolvec (12 + 7) to be equivalent.

▶ Relation means that (under context Γ)
expressions/types/kinds are equivalent and
have the given type/kind.
▶ Γ ⊢ e1 ≡ e2 :τ
▶ Γ ⊢ τ1 ≡ τ2 ::K
▶ Γ ⊢ K1 ≡ K2

13 / 21

Judgments for term equivalence

Γ ⊢ τ1 ≡ τ2 ::Type Γ, x :τ1 ⊢ e1 ≡ e2 :τ

Γ ⊢ λx :τ1. e1 ≡ λx :τ2. e2 : (x :τ1) → τ

Γ ⊢ e1 ≡ e2 : (x :τ) → τ ′ Γ ⊢ e ′1 ≡ e ′2 :τ

Γ ⊢ e1 e
′
1 ≡ e2 e

′
2 :τ

′{e ′1/x}

Γ, x :τ ⊢ e :τ ′ Γ ⊢ e ′ :τ

Γ ⊢ (λx :τ. e) e ′ ≡ e{e ′/x} :τ ′{e ′/x}
Γ ⊢ e : (x :τ) → τ ′ x ̸∈ FV (e)

Γ ⊢ (λx :τ. e x) ≡ e : (x :τ) → τ ′

14 / 21

Judgments for term equivalence

Γ ⊢ e1 ≡ e2 :nat Γ ⊢ e ′1 ≡ e ′2 :nat

Γ ⊢ e1 + e ′1 ≡ e2 + e ′2 :nat

Γ ⊢ k +m ≡ n :nat
n is the sum of k and m

Γ ⊢ e :τ

Γ ⊢ e ≡ e :τ

Γ ⊢ e1 ≡ e2 :τ

Γ ⊢ e2 ≡ e1 :τ

Γ ⊢ e1 ≡ e2 :τ Γ ⊢ e2 ≡ e3 :τ

Γ ⊢ e1 ≡ e3 :τ

15 / 21

Judgments for type equivalence

Γ ⊢ τ1 ≡ τ2 ::Type Γ, x :τ1 ⊢ τ ′1 ≡ τ ′2 ::Type

Γ ⊢ (x :τ1) → τ ′1 ≡ (x :τ2) → τ ′2 ::Type

Γ ⊢ τ1 ≡ τ2 :: (x :τ) ⇒ K Γ ⊢ e1 ≡ e2 :τ

Γ ⊢ τ1 e1 ≡ τ2 e2 ::K{e1/x}

Γ ⊢ τ ::K

Γ ⊢ τ ≡ τ ::K

Γ ⊢ τ1 ≡ τ2 ::K

Γ ⊢ τ2 ≡ τ1 ::K

Γ ⊢ τ1 ≡ τ2 ::K Γ ⊢ τ2 ≡ τ3 ::K

Γ ⊢ τ1 ≡ τ3 ::K

16 / 21

Judgments for kind equivalence

Γ ⊢ τ1 ≡ τ2 ::Type Γ, x :τ1 ⊢ K1 ≡ K2

Γ ⊢ (x :τ1) ⇒ K1 ≡ (x :τ2) ⇒ K2

Γ ⊢ K ok

Γ ⊢ K ≡ K

Γ ⊢ K1 ≡ K2

Γ ⊢ K2 ≡ K1

Γ ⊢ K1 ≡ K2 Γ ⊢ K2 ≡ K3

Γ ⊢ K1 ≡ K3

17 / 21

Equivalence Examples?

▶ The types boolvec 42 and boolvec (35 + 7)
are equivalent.

▶ But what about if we are in a context where
we have variables x and f of type nat and
nat → nat, respectively, where we know that
f x = 7? Should we consider the types
boolvec (f x) and boolvec 7 to be
equivalent?

18 / 21

Back to vectors...

▶ boolvec e: enforce e of type nat.

▶ init: (n : nat) → bool → boolvec n.

▶ also join: (n : nat) → (k : nat) →
boolvec n → boolvec k → boolvec (n + k)

19 / 21

Back to vectors...

What about the type of index?

20 / 21

Back to vectors...

What about the type of asPairs?
asPairs < v1, . . . , vn > evaluates to
(v1, (v2, . . . (vn, ()) . . .))

21 / 21

