Dependent types
CS 1520 (Spring 2025)

Harvard University

Thursday, April 10, 2025

1/21

Today, we will learn about

» Dependent types

» Motivation: reasoning precisely about vectors
» LF (Logical Framework) type system

2/21

Dependent types: motivation

ex=x|Mx.e|lee|n|(e,e)]|()]true] false

| init | index
vi=Ax.e|n|<wvy, ... v, > (vi,w) | ()] true | false
— Viel.k vi=v
init k v.—< vy, ..., v >

index < wvq,...,vx> I —> Vi1

3/21

First attempt at type system

Viel.n. TF v:bool
F<w,...,v, >boolvec n

[+ e :nat [+ e :bool
[init ¢; & :boolvec ¢

[- e;:boolvec &3 [F e :nat
e < 63

[+ index e; e :bool

4/21

Issues (1/3)

In the type for init, (n : nat) — bool — boolvec n,
the first argument is somehow bound to the variable
n which occurs in the return type of the function.
What does this mean?

5/21

Issues (2/3)

The type boolvec e contains an arbitrary expression
expression e. What do the types boolvec (9 + 1) or
boolvec x mean? And what does it mean in the

proposed typing rule for index to have a side
condition e; < 37

6/21

Issues (3/3)

The expression e in the type boolvec e should be
of type nat. How do we ensure that e is limited to
expressions of type nat?

7/21

LF (Logical Framework)

Expressions e:=x|Ax:T.e|e e |n|e + ¢
< Vi, v >,

Types 7 ::= nat | boolvec | bool | unit
|7e|(x:m1) = ™

Kinds K :=Type | (x:7) = K

8/21

Judgment for Expressions: [I e: 7

72K
Fx:7 [+ n:nat
[Fe:nat [+ e:nat
[+ e+ e:nat
For all i € 1..n. [v;:bool

x:Ttel — neN

< w,...,v, >boolvec n

[+ 7:Type Mx:TFe:7

NEXxcre:(x:t) =7

[Fe:(x:7)— 7 M- ey: 7

[Fe e:7{e/x}

9/21

Judgment for Expressions: [I e: 7

/

M-e:T [F7=7":Type

[+ e:T

CONVERSION

10/21

Judgment for Types: [= 7::K

I+ K ok
= XK
- 7::Type [x:7F 7 Type
[F(x:7) — 7/ Type

X:Kel

[Era(x:7)= K M-e: 7’
NE7enK{e/x}

72K’ r'-K=K'
70K

CONVERSION

11/21

Judgment for Kinds: ' = K ok

[7:Type [, x:7F K ok
[+ Type ok M (x:7) = K ok

12/21

Judgments for equivalence

» We would like to consider the types boolvec 19
and boolvec (12 + 7) to be equivalent.

» Relation means that (under context I)
expressions/types/kinds are equivalent and
have the given type/kind.

> [Fe=e:T
> T Frn=nuK
> [+ Kl = K2

13/21

Judgments for term equivalence

[71 =71 Type W x:mmkFe =e:T
FEXxcT.ei = Mxm.e:(x:in) > 7
lFe=e:(x:T)—> 71 F-el=é:r

(e e =e e:7'{e/x}

Mx:Tke:r M-e:r
M- (Ax:T.e) e =e{e/x}:7{/x}
[Fe:(x:1) =7 x & FV(e)
[(Ax:T.e x)=e:(x:7) = 7'

14 /21

Judgments for term equivalence

[Fe=e:nat [F e =é):nat

[Fe + e = e+ é:nat

n is the sum of k and m

[k + m= n:nat

[Fe:T [Fe =67
[Fe=e:T [Fe=e:T
[Fe=e:T [Fe=e:T

[Fe =e:T

15/21

Judgments for type equivalence

F 71 =7 Type [x:m b1 =75 Type

e (x:11) = 11 = (x:12) = 75:: Type
[Frn=nt(x7)=> K lFe=e:T
[Fre=me:K{e/x}

72K [Fr=nmeK

Fr=72K lEFm=naK

rFr=mnuK [Fm=r0K
' =maK

16/21

Judgments for kind equivalence

71 =m:Type x:1 K =K,
[E(x:n) = K = (x:1) = K>

= K ok -Ki =K
N-K=K =Ky =Ky
N-=Ki =K =Ky = Ks
K =K;

17/21

Equivalence Examples?

>

>

The types boolvec 42 and boolvec (35 + 7)
are equivalent.

But what about if we are in a context where
we have variables x and f of type nat and
nat — nat, respectively, where we know that
f x =77 Should we consider the types
boolvec (f x) and boolvec 7 to be
equivalent?

18/21

Back to vectors...

» boolvec e: enforce e of type nat.
» init: (n: nat) — bool — boolvec n.
» also join: (n: nat) — (k : nat) —
boolvec n — boolvec k — boolvec (n + k)

19/21

Back to vectors...

What about the type of index?

20/21

Back to vectors...

What about the type of asPairs?
asPairs < vi,...,v, > evaluates to

(vi, (va, ... (v, ())...))

21/21

