
Concurrency
CS 1520 (Spring 2025)

Harvard University

Tuesday, April 22, 2025

1 / 44

Today, we will learn about

▶ A simple concurrent λ-calculus

▶ Effect system for determinism

▶ Message passing

2 / 44

A simple concurrent λ-calculus

3 / 44

concurrent operator ||

The expression e1||e2 will concurrently evaluate e1
and e2. If expression e1 evaluates to v1 and e2
evaluates to v2, the result of evaluating e1||e2 will
be the pair (v1, v2).

4 / 44

A simple concurrent λ-calculus (syntax)

e ::= x | n | λx . e | e1 e2 | e1||e2 | (e1, e2) | #1 e | #2 e

| ref e | !e | e1 := e2 | ℓ
v ::= n | λx . e | (v1, v2) | ℓ

5 / 44

A simple concurrent λ-calculus

E ::= [·] | E e | v E | (E , e) | (v ,E) | #1 E | #2 E

| ref E | !E | E := e | v := E

6 / 44

A simple concurrent λ-calculus

< e, σ >−→< e ′, σ′ >

< E [e], σ >−→< E [e ′], σ′ >

< (λx . e) v , σ >−→< e{v/x}, σ >

< ref v , σ >−→< ℓ, σ[ℓ 7→ v] >
ℓ ̸∈ dom(σ)

< !ℓ, σ >−→< v , σ >
σ(ℓ) = v

< ℓ := v , σ >−→< v , σ[ℓ 7→ v] >

7 / 44

A simple concurrent λ-calculus

< #1 (v1, v2), σ >−→< v1, σ >

< #2 (v1, v2), σ >−→< v2, σ >

< e1, σ >−→< e ′1, σ
′ >

< e1||e2, σ >−→< e ′1||e2, σ′ >

< e2, σ >−→< e ′2, σ
′ >

< e1||e2, σ >−→< e1||e ′2, σ′ >

< v1||v2, σ >−→< (v1, v2), σ >

8 / 44

Example: concurrent deposits

let bal = ref 0 in

(let y = (bal := !bal + 25||bal := !bal + 50) in

!bal)

9 / 44

Sequential consistency

the result of any execution is as if the memory
operations of all the threads were executed in some
global sequential order, and the memory operations
of each individual thread appear in this sequence in
the same order they appear in the thread.

i.e. as if there were a single global memory, and
only one thread at a time is allowed to access the
memory.

10 / 44

Hardware optimization
▶ write buffers with bypassing capabilities
▶ each core has its own write buffer
▶ when it issues a write, the write goes into the

buffer and the program can continue
▶ when the core wants to read a (different)

memory location, it can “bypass” the write
buffer, i.e. it can go immediately to memory to
read the memory location, even if all of the
writes it issued have not yet finished

▶ common hardware optimization used in
uniprocessors, since it helps hide the latency of
write operations

▶ but with multiple cores, this can violate
sequential consistency 11 / 44

Hardware optimization (Example)

▶ Two memory locations a and b both containing
zero.

▶ First core executes
a := 1; if !b = 0 then e else ()

▶ Second core executes
b := 1; if !a = 0 then e else ()

▶ Under sequential consistency, at most one of
these cores will execute expression e.

▶ With write buffers, both cores may read 0 and
both cores execute expression e!

12 / 44

Effect system for determinism

13 / 44

Memory region

14 / 44

Syntax Changes

e ::= · · · | refα e | ℓα
v ::= · · · | ℓα

15 / 44

Computational effect

16 / 44

New Judgement

We write Γ,Σ ⊢ e :τ ▷ R ,W to mean that under
variable context Γ and store typing Σ, expression e
has type τ , and that during evaluation of e, any
location read will belong to a region in set R (the
read effects of e), and any locations written will
belong to a region in set W (the write effects of e).

17 / 44

Extended Function Type

We extend function types with read and write
effects. A function type is now of the form

τ1
R,W−→ τ2. A function of this type takes as an

argument a value of type τ1, and produces a value
of type τ2; R and W describe, respectively, the read
and write effects that may occur during execution of
the function.

τ ::= int | τ1
R,W−→ τ2 | τ1 × τ2 | τ refα

18 / 44

Static Rules

Γ,Σ ⊢ n : int ▷ ∅, ∅
Γ(x) = τ

Γ,Σ ⊢ x :τ ▷ ∅, ∅

Γ[x 7→ τ],Σ ⊢ e :τ ′ ▷ R ,W

Γ,Σ ⊢ λx :τ. e :τ
R,W−→ τ ′ ▷ ∅, ∅

Γ,Σ ⊢ e1 :τ
R,W−→ τ ′ ▷ R1,W1 Γ,Σ ⊢ e2 :τ ▷ R2,W2

Γ,Σ ⊢ e1 e2 :τ
′ ▷ R1 ∪ R2 ∪ R ,W1 ∪W2 ∪W

19 / 44

Static Rules

Γ,Σ ⊢ e :τ ▷ R ,W

Γ,Σ ⊢ refα e :τ refα ▷ R ,W

Γ,Σ ⊢ e :τ refα ▷ R ,W

Γ,Σ ⊢ !e :τ ▷ R ∪ {α},W

Γ,Σ ⊢ e1 :τ refα ▷ R1,W2 Γ,Σ ⊢ e2 :τ ▷ R2,W2

Γ,Σ ⊢ e1 := e2 :τ ▷ R1 ∪ R2,W1 ∪W2 ∪ {α}

Γ,Σ ⊢ ℓα :τ refα ▷ ∅, ∅
Σ(ℓα) = τ refα

20 / 44

Static Rules

Γ,Σ ⊢ e1 :τ1 ▷ R1,W1 Γ,Σ ⊢ e2 :τ2 ▷ R2,W2

Γ,Σ ⊢ (e1, e2) :τ1 × τ2 ▷ R1 ∪ R2,W1 ∪W2

Γ,Σ ⊢ e :τ1 × τ2 ▷ R ,W

Γ,Σ ⊢ #1 e :τ1 ▷ R ,W

Γ,Σ ⊢ e :τ1 × τ2 ▷ R ,W

Γ,Σ ⊢ #2 e :τ2 ▷ R ,W

21 / 44

Static Rules

Γ,Σ ⊢ e1 :τ1 ▷ R1,W1 W1 ∩ (R2 ∪W2) = ∅
Γ,Σ ⊢ e2 :τ2 ▷ R2,W2 W2 ∩ (R1 ∪W1) = ∅
Γ,Σ ⊢ e1||e2 :τ1 × τ2 ▷ R1 ∪ R2,W1 ∪W2

22 / 44

Static Rules
The rule for dereferencing a location adds the
appropriate region to the read effect. The rule for
updating locations adds the appropriate region to
the write effect. The other rules just propagate read
and write effects as needed.
The rule for the concurrent operator is the most
interesting. A concurrent command e1||e2 is
well-typed only if the write effect of e1 does not
intersect with the read or write effects of e2, and
vice versa. That is, there is no region such that e1
writes to that region, and e2 reads or writes to the
same region. This prevents data races, i.e., two
threads that are concurrently accessing the same
location, and one of those accesses is a write.

23 / 44

Type soundness?

Intuitively, it extends our previous notion of type
safety (i.e., not getting stuck), with the notion that
R and W correctly characterize the reads and writes
that a program may perform. We express this idea
with the following theorem. (Note that we assume
that evaluation contexts include E ||e and e||E .)

24 / 44

Type Soundness

If ⊢ e :τ ▷ R ,W then for all stores σ and σ′,

▶ if, for some evaluation context E , we have
< e, σ >−→∗< E [!ℓα], σ

′ >, then α ∈ R .

▶ if, for some evaluation context E , we have
< e, σ >−→∗< E [ℓα := v], σ′ >, then α ∈ W .

▶ if < e, σ >−→∗< e ′, σ > then either e ′ is a
value or there exists e ′′ and σ′′ such that
< e ′, σ′ >−→< e ′′, σ′′ >.

25 / 44

Type soundness

The theorem says that if expression e is well typed,
and, during its evaluation, it dereferences a location
belonging to region α, then the type judgment had
α in the read effect of e. It also says that if
evaluation updates a location ℓα, then α is in the
write effect of e. (We could also have tracked the
allocation effect of e, i.e., in which region e
allocates new locations, but we don’t need to for
our purposes.)

26 / 44

Determinism

The theorem says that a well-typed program is
deterministic. If there are two executions, then both
executions produce the same value.

27 / 44

Determinism

If Γ,Σ ⊢ e :τ ▷ R ,W and < e, σ >−→∗< v1, σ1 >
and < e, σ >−→∗< v2, σ2 > then v1 = v2.

28 / 44

Proof of Determinism

The proof of this theorem relies on the following key
lemma, which says that if a well-typed concurrent
expression e1||e2 can first take a step with e2, and
then take a step with e1, then we can first step e1
and then e2, and end up at the same state.

29 / 44

Proof of Determinism (Key Lemma)

If for some Σ, τ,R and W we have
∅,Σ ⊢ e1||e2 :τ ▷ R ,W , then for all σ such that
Γ,Σ ⊢ σ if

< e1||e2, σ >−→< e1||e ′2, σ′ >−→< e ′1||e ′2, σ′′ >,

then there exists σ′′′ such that

< e1||e2, σ >−→< e ′1||e2, σ′′′ >−→< e ′1||e ′2, σ′′ > .

30 / 44

Proof of Determinism (Key Lemma)

Intuitively, the proof works by showing that given
any two executions of a program, they are both
equivalent to a third execution in which we always
fully evaluate the left side of a concurrent operator
first, before starting to evaluate the right side of a
concurrent operator. By transitivity, the two
executions must be equal, and produce equal values.

31 / 44

Abstractions for Concurrency

communication

coordination

atomicity

32 / 44

Message passing

▶ Shared memory model of concurrency can
make it difficult to reason about the
interactions between threads.

▶ Message passing: a different model of
concurrency.

33 / 44

Message passing

▶ Threads communicate by sending and receiving
messages over channels.

▶ Channels are first-class values: they can be
created at runtime, and used as values,
including being passed as messages over
channels.

▶ Several languages use message passing,
including Erlang, Go, Rust, Racket, X10,
Smalltalk, F#, Concurrent ML (CML), and
others.

34 / 44

Message passing: Syntax

c ∈ ChanId

e ::= λx :τ. e | x | e1 e2 | n | e1 + e2 | () | µf . e
| c | spawn e | newchanτ
| send e1 to e2 | recv from e

v ::= n | c | () | λx :τ. e
τ ::= int | unit | τ chan | τ1 → τ2

35 / 44

Message passing: Type system

Γ ⊢ e :τ

Γ ⊢ spawn e :unit Γ ⊢ newchanτ :τ chan

Γ ⊢ e1 :τ Γ ⊢ e2 :τ chan

Γ ⊢ send e1 to e2 :unit

Γ ⊢ e :τ chan

Γ ⊢ recv from e :τ

36 / 44

Message passing: Operational Semantic

▶ A configuration is now a list of expressions, one
expression for each thread. That is,
configuration < e1, . . . , en > represents the
concurrent execution of n threads.

▶ Use judgement
< e1, . . . , en >=⇒< e ′1, . . . , e

′
m > to indicate

that configuration < e1, . . . , en > can take a
small step to < e ′1, . . . , e

′
m >.

▶ Use judgement e −→ e ′ to indicate that thread
e can take a small step to e ′.

37 / 44

Message passing: e −→ e ′

E ::= [·] | E e | v E | E + e | v + E

| send E to e | send v to E | recv from E

e −→ e ′

E [e] −→ E [e ′] (λx :τ. e) v −→ e{v/x}

n1 + n2 −→ m
m = n1 + n2

µx :τ. e −→ e{(µx :τ. e)/x}

newchanτ −→ c
c is fresh

38 / 44

Message passing: Notation

As a notational convenience, we write
< e1, . . . , en >i 7→e′ as shorthand for the
configuration < e1, . . . , ei−1, e

′, ei+1, . . . , en >, i.e.,
where the ith thread is replaced with expression e ′.

39 / 44

Message passing:
< e1, . . . , en >=⇒< e ′1, . . . , e

′
m >

ei −→ e ′i
< e1, . . . , en >=⇒< e1, . . . , en >i 7→e′i

ei = E [spawn e]

< e1, . . . , en >=⇒< e1, . . . , en, e >i 7→E [()]

ei = Ei [send v to c] ej = Ej [recv from c]

< e1, . . . , en >=⇒< e1, . . . , en >i 7→Ei [()],j 7→Ej [v]

40 / 44

Message passing: Notation

For convenience, we write e1; e2 as shorthand for
let x = e1 in e2 where x ̸∈ FV (e2). (And
let x = e1 in e2 as itself shorthand for a function
application.)

41 / 44

Message passing: Example 1

let c = newchanint in

spawn (send 35 to c);

recv from c + 7

42 / 44

Message passing: Example 2

let c = newchanint in

spawn (µf . (send 35 to c ; f));

recv from c + recv from c + recv from c

43 / 44

Message passing: Example 3

let c = newchanint in

spawn (3 + recv from c);

spawn (5 + recv from c);

send 15 to c

44 / 44

