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Announcements (1/2)

•Name tags 
•Device free seating  

•Right side of classroom (as facing front): no devices 
•Allow you to commit to being device-free/avoid 

devices 

•Student info: please complete END OF TODAY 
(Thursday Sept 6) 
•https://tiny.cc/cs153-registration  
•We need it to set you up for the projects
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Announcements (2/2)

•Project 1 will be released today 
•We will email you link to instructions (on webpage) and 

project repo 
•Please don’t share repo link!!! 

•We strongly encourage you to do projects in pairs 
•You do not need to have the same partner for all 

projects 
•http://tiny.cc/cs153-partner 
•Fill in form by END OF FRIDAY (Sept 7)if you would 

like to be matched up with a partner
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Today

•Quick overview of the MIPS instruction set.  
•We're going to be compiling to MIPS assembly 

language. 
•So you need to know how to program at the MIPS 

level. 
•Helps to have a bit of architecture background to 

understand why MIPS assembly is the way it is.  

•Online resources describe MIPS in more detail 
(see end of lecture notes)
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Turning C into Machine Code
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int dosum(int i, int j) {
return i+j;

}

dosum:
        pushl   %ebp
        movl    %esp, %ebp
        movl    12(%ebp), %eax
        addl    8(%ebp), %eax
        popl    %ebp
        ret

80483b0: 55 89 e5 8b 45 0c 03 45 08 5d c3

C compiler (gcc)

Assembler (gas)

C program 
(myprog.c)

Assembly program 
(myprog.s)

Machine code 
(myprog.o)
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Skipping assembly language

•Most C compilers generate machine code (object files) directly. 
•That is, without actually generating the human-readable assembly file. 

•Assembly language is mostly useful to people, not machines. 

•Can generate assembly from C using “gcc -S” 
•And then compile to an object file by hand using “gas”
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myprog.c myprog.s myprog.ogcc -S gas

gcc -c
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Object files and executables

•C source file (myprog.c) is compiled into an object file (myprog.o) 
•Object file contains the machine code for that C file. 

•It may contain references to external variables and routines 

•E.g., if myprog.c calls printf(), then myprog.o will contain a reference to printf(). 

•Multiple object files are linked to produce an executable file. 
•Typically, standard libraries (e.g., “libc”) are included in the linking process. 

•Libraries are just collections of pre-compiled object files, nothing more!
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myprog.c myprog.ogcc -c

somelib.c somelib.ogcc -c

myproglinker 
(ld)
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Characteristics of assembly language

•Assembly language is very, very simple. 

•Simple, minimal data types 
•Integer data of 1, 2, 4, or 8 bytes 

•Floating point data of 4, 8, or 10 bytes 

•No aggregate types such as arrays or structures! 

•Primitive operations 
•Perform arithmetic operation on registers or memory (add, subtract, etc.) 

•Read data from memory into a register 

•Store data from register into memory 

•Transfer control of program (jump to new address) 

•Test a control flag, conditional jump (e.g., jump only if zero flag set) 

•More complex operations must be built up as (possibly long)  
sequences of instructions.
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Assembly vs Machine Code 

•We write assembly language instructions 
•e.g., “addi $r1, $r2, 42” 

•The machine interprets machine code bits 
•e.g., “101011001100111…” 

•Your first assignment is to build an interpreter for 
a subset of the MIPS machine code. 

•The assembler takes care of compiling assembly 
language to bits for us. 
•It also provides a few conveniences as we’ll see.
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MIPS

•MIPS is a RISC computer architecture developed 1985 onwards 
•Multiple versions: MIPS I, II, III, IV, and V 

•Designed as a general purpose processor  

•Historically used in personal computers, workstations, servers, 
video game consoles (Nintendo 64, Sony PlayStation, PlayStation 2, and PlayStation Portable), 
supercomputers 

•Currently used in embedded systems  
•E.g., residential gateways and routers 
•And many CS courses! 

•Why are we using it? 
•Relatively simple instruction set 
•“The MIPS architecture may be the epitome of a simple, clean RISC 

machine.” –James Larus
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Some MIPS Assembly 

 11

int sum(int n) {
  int s = 0;          
  for (; n != 0; n--) 
    s += n;
  return s;           
}                     

sum:   ori  $2,$0,$0
       b    test
loop:  add  $2,$2,$4
       subi $4,$4,1
test:  bne  $4,$0,loop
       jr   $31

int main() {
  return sum(42);
} 

main:  ori  $4,$0,42
       move $17,$31
       jal  sum    
       jr   $17
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An X86 Example (-O0): 
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_sum:
pushq %rbp
movq %rsp, %rbp
movl %edi, -4(%rbp)
movl $0, -8(%rbp)

LBB0_1:           
cmpl $0, -4(%rbp)
je LBB0_4
movl -4(%rbp), %eax
addl -8(%rbp), %eax
movl %eax, -8(%rbp)
movl -4(%rbp), %eax
addl $-1, %eax
movl %eax, -4(%rbp)
jmp LBB0_1

LBB0_4:
movl -8(%rbp), %eax
popq %rbp
retq

                      

_main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movl $42, %edi
movl $0, -4(%rbp)
callq _sum
addq $16, %rsp
popq %rbp
retq
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An X86 Example (-O3): 
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_sum:         
pushq %rbp
movq %rsp, %rbp
testl %edi, %edi
je LBB0_1
leal -1(%rdi), %eax
leal -2(%rdi), %ecx
imulq %rax, %rcx
imull %eax, %eax
shrq %rcx
addl %edi, %eax
subl %ecx, %eax
popq %rbp
retq

LBB0_1:
xorl %eax, %eax
popq %rbp
retq

_main:
pushq %rbp
movq %rsp, %rbp
movl $903, %eax        
popq %rbp
retq
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MIPS

•Reduced Instruction Set Computer (RISC) 
•Load/store architecture 
• i.e., only memory operations are load and store 

•All operands are either registers or constants 
•All instructions same size (4 bytes) and aligned on 4-byte 

boundary. 
•Simple, orthogonal instructions 
• e.g., no subi,  (addi and negate value) 

•All registers (except $0) can be used in all instructions. 
• Reading $0 always returns the value 0 

•Easy to make fast:  pipeline, superscalar
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MIPS Datapath
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x86

•Complex Instruction Set Computer (CISC) 
•Instructions can operate on memory values 
• e.g.,  add  [eax],ebx 

•Complex, multi-cycle instructions  
• e.g.,  string-copy, call 

•Many ways to do the same thing 
• e.g., add eax,1       inc eax        sub eax,-1 

•Instructions are variable-length (1-10 bytes) 
•Registers are not orthogonal 

•Hard to make fast…(but they do anyway)
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Tradeoffs

•x86 (as opposed to MIPS): 
•Lots of existing software. 
•Harder to decode (i.e., parse). 
•Harder to assemble/compile to. 
•Code can be more compact (3 bytes on avg.) 
•I-cache is more effective… 
•Easier to add new instructions. 

•Todays implementations have the best of both:  
•Intel & AMD chips suck in x86 instructions and compile 

them to “micro-ops”, caching the results. 
•Core execution engine more like MIPS.
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MIPS Registers and Usage Conventions
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A-24 Appendix A Assemblers, Linkers, and the SPIM Simulator

the stack pointer. The executing procedure uses the frame pointer to quickly
access values in its stack frame. For example, an argument in the stack frame can
be loaded into register $v0 with the instruction

 lw $v0, 0($fp)

 Register name Number Usage

 $zero 00 constant 0

 $at 01 reserved for assembler 

 $v0 02 expression evaluation and results of a function

 $v1 03 expression evaluation and results of a function

 $a0 04 argument 1 

 $a1 05 argument 2 

 $a2 06 argument 3 

 $a3 07 argument 4 

 $t0 08 temporary (not preserved across call) 

 $t1 09 temporary (not preserved across call) 

 $t2 10 temporary (not preserved across call) 

 $t3 11 temporary (not preserved across call) 

 $t4 12 temporary (not preserved across call) 

 $t5 13 temporary (not preserved across call) 

 $t6 14 temporary (not preserved across call) 

 $t7 15 temporary (not preserved across call) 

 $s0 16 saved temporary (preserved across call) 

 $s1 17 saved temporary (preserved across call) 

 $s2 18 saved temporary (preserved across call) 

 $s3 19 saved temporary (preserved across call) 

 $s4 20 saved temporary (preserved across call) 

 $s5 21 saved temporary (preserved across call) 

 $s6 22 saved temporary (preserved across call) 

 $s7 23 saved temporary (preserved across call) 

 $t8 24 temporary (not preserved across call) 

 $t9 25 temporary (not preserved across call) 

 $k0 26 reserved for OS kernel 

 $k1 27 reserved for OS kernel 

 $gp 28 pointer to global area 

 $sp 29 stack pointer 

 $fp 30 frame pointer 

 $ra 31 return address (used by function call) 

FIGURE A.6.1 MIPS registers and usage convention.
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MIPS Registers and Usage Conventions
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MIPS Instructions

•Arithmetic & logical instructions: 
•add, sub, and, or, sll, srl, sra, … 
•Register and immediate forms: 
•add   $rd, $rs, $rt
•addi  $rd, $rs, <16-bit-immed>

•Any registers (except $0 returns 0) 
•Also a distinction between overflow and no-overflow 

(we’ll ignore for now.
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Detour: 2’s complement

•Representing non-negative integers in bits is 
straightforward 

•How do we represent negative integers in bits? 
•Three common encodings: 

•Sign and magnitude 
•Ones’ complement 
•Two’s complement

 21
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Two’s complement

•If integer k is represented by bits b1...bn, then -k is 
represented by 100...00 - b1...bn (where |100…00|=n+1) 
•Equivalent to taking ones’ complement and adding 1 
•E.g., using 4 bits: 

• 6 = 0110 

• -6 = 10000-0110 = 1010 = (1111-0110)+1
•Using n bits, can represent numbers 2n values 

•E.g., using 4 bits, can represent integers 
              -8, -7, …, -1, 0, 1, …, 6, 7 

•Like sign and magnitude and ones’ complement, first bit 
indicates whether number is negative
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Properties of two’s complement

•Same implementation of arithmetic operations as for 
unsigned 
•E.g., addition, using 4 bits 
• unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010 

• two’s complement: 0001 + 1001 = 1 + -7 = -6 = 1010 
•Only one representation of zero! 

•Simpler to implement operations  

•Not symmetric around zero 
•Can represent more negative numbers than positive numbers 

•Most common representation of negative integers
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Integer overflow

•Overflow can also occur with negative integers 
•With 32 bits, maximum integer expressible in 2‘s 

complement is 231-1 = 0x7fffffff 

•0x7fffffff + 0x1 = 0x80000000 = -231 

•Minimum integer expressible in 32-bit 2’s complement 

•0x80000000 + 0x80000000 = 0x0

 24



Carnegie Mellon 

52 

?"$/);"D"*-&]*$"-*(+&F++"61*&

!  J.)5$&F.1/*+&
!  (U'*+.4'7.2'v'$0'

!  :*'2,7*',)/4'

>'

$0)

$0l!'

]F++gZ-&%&*[&

-"

*"

3./(&=/8&

C1+/;).&=/8&

DC4+�,V'

B<(.n1P&

Stephen Chong, Harvard University

Integer overflow
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Integer overflow
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Instruction encodings

•How instructions are represented in 4 bytes 

•add $rd, $rs, $rt

 27

0 rs rt rd 0 0x20
6 5 5 5 5 6

32 bits
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Instruction encodings

•How instructions are represented in 4 bytes 
•add $rd, $rs, $rt

•addi $rt, $rs, <imm>

•More details in the SPIM Simulator manual 
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0 rs rt rd 0 0x20
6 5 5 5 5 6

32 bits

8 rs rt imm
6 5 5 16

32 bits
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Movement

•MIPS has no instruction to move contents of one 
register to another 
•But assembler provides pseudo-instructions 

•                   move $rd, $rs     
becomes     or   $rd, $rs, $0 

•Has instruction to load 16-bit immediate values 
into  registers, but not for 32-bit immediate. (Why?) 
•                  li  $rd, <32-bit-imm>  

becomes    lui $rd, <hi-16-bits>  
        ori $rd, $rd, <lo-16-bits>
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Multiply and Divide Instructions

•Instructions to multiply 
•mul $rd, $rs, $rt  

multiplies rs and rt (as signed integers), puts result in rd 

•Any issues? 
•Could overflow...
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Multiply and Divide Instructions

•Use two special register lo and hi (cannot be used as 
arguments for instructions) 

•mult $rs, $rt        multu $rs, $rt  
multiplies rs and rt (as signed/unsigned integers), puts 
result into lo and hi 

•mflo $rd and mfhi $rd move contents of lo and hi 
into register rd 

•Also instructions madd, msub, etc. to multiply and add/
sub the result to lo and hi

•Divide operations use lo and hi to store the quotient 
and remainder respectively.
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Load/Store Instructions

•Instructions to access memory 
•lw   $rd, <imm>($rs)  

loads contents of memory address rs+imm into rd 

•sw   $rs, <imm>($rt)  
stores register rs into memory address rt+imm

•Only one addressing mode! <imm>($rs) 
•Traps (fails) if rs+imm is not word-aligned 

•Other instructions to load bytes and half-words

 32
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Comparisons

•slt  $rd, $rs, $rt   
•Set Less Than
•rd := (rs < rt), treating rs and rt as signed integers 

•slti  $rd, $rs, <imm16> 
•Set Less Than Immediate
•rd := (rs < imm16), treating rs and imm16 as signed integers 

•Additionally, unsigned versions:  sltu, sltiu 
•i.e., treating operands as unsigned integers 

•Assembler provides pseudo-instructions for seq, 
sge, sgeu, sgt, sne, …

 33
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Conditional Branching

•beq $rs,$rt,<imm16>
•if $rs == $rt  then pc := pc + imm16 

•bne $rs,$rt,<imm16>
•b <imm16>  ==  beq $0,$0,<imm16> 
•bgez $rs, <imm16>   

•if $rs ≥ 0 then pc := pc + imm16 

•Also bgtz, blez, bltz 
•Pseudo instructions: 
•b<comp> $rs,$rt, <imm16>

 34



Stephen Chong, Harvard University

Labels

•Writing offsets for branches is difficult! 
•Assembler lets us use symbolic labels instead 
•Put a label on an instruction and then can 

branch to it: 

•Assembler figures out actual offsets. 
•(How would you implement that?)

 35

 LOOP: ...
       bne $3, $2, LOOP
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Unconditional Jumps

•j <imm26>
•Jump 
•pc := (imm26 << 2) 

•jr  $rs
•Jump register 

•pc := $rs 

•jal <imm26>
•Jump and link. Used for calling functions. Puts the return address into $31 
•$31 := pc+4 ;  pc := (imm26 << 2) 

•Also, jalr and a few others. 

•Again, in practice, we use labels:

 36

fact:  ...
main:  ...  
     jal fact
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Other Instructions

•Floating-point (separate registers $fi) 
•Traps 
•OS-trickery

 37
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Back to example
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int sum(int n) {
  int s = 0;          
  for (; n != 0; n--) 
    s += n;
  return s;           
}                     

sum:   ori  $2,$0,$0
       b    test
loop:  add  $2,$2,$4
       subi $4,$4,1
test:  bne  $4,$0,loop
       jr   $31

int main() {
  return sum(42);
} 

main:  ori  $4,$0,42
       move $17,$31
       jal  sum    
       jr   $17
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Slightly better
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int sum(int n) {
  int s = 0;          
  for (; n != 0; n--) 
    s += n;
  return s;           
}                     

sum:   ori  $2,$0,$0
       b    test
loop:  add  $2,$2,$4
       subi $4,$4,1
test:  bne  $4,$0,loop
       jr   $31

int main() {
  return sum(42);
} 

main:  ori  $4,$0,42
       jal  sum    
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SPIM Simulator

•We will program to the MIPS virtual machine which is 
provided by the assembler. 
•Lets us use macro instructions, labels, etc. 
• (but we must leave a scratch register for the assembler to do its 
work) 

•Lets us ignore delay slots. 
• (but then we pay the price of not scheduling those slots.) 

•More information about SPIM and the MIPS instruction 
set in  
    “Assemblers, Linkers, and the SPIM Simulator” 
    by James Larus  
    http://spimsimulator.sourceforge.net/HP_AppA.pdf 
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