
CS153: Compilers
Lecture 2: Assembly

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements (1/2)

•Name tags
•Device free seating

•Right side of classroom (as facing front): no devices
•Allow you to commit to being device-free/avoid

devices

•Student info: please complete END OF TODAY
(Thursday Sept 6)
•https://tiny.cc/cs153-registration
•We need it to set you up for the projects

 2

https://tiny.cc/cs153-registration

Stephen Chong, Harvard University

Announcements (2/2)

•Project 1 will be released today
•We will email you link to instructions (on webpage) and

project repo
•Please don’t share repo link!!!

•We strongly encourage you to do projects in pairs
•You do not need to have the same partner for all

projects
•http://tiny.cc/cs153-partner
•Fill in form by END OF FRIDAY (Sept 7)if you would

like to be matched up with a partner

 3

http://tiny.cc/cs153-partner

Stephen Chong, Harvard University

Today

•Quick overview of the MIPS instruction set.
•We're going to be compiling to MIPS assembly

language.
•So you need to know how to program at the MIPS

level.
•Helps to have a bit of architecture background to

understand why MIPS assembly is the way it is.

•Online resources describe MIPS in more detail
(see end of lecture notes)

 4

Stephen Chong, Harvard University

Turning C into Machine Code

 5

int dosum(int i, int j) {
return i+j;

}

dosum:
 pushl %ebp
 movl %esp, %ebp
 movl 12(%ebp), %eax
 addl 8(%ebp), %eax
 popl %ebp
 ret

80483b0: 55 89 e5 8b 45 0c 03 45 08 5d c3

C compiler (gcc)

Assembler (gas)

C program
(myprog.c)

Assembly program
(myprog.s)

Machine code
(myprog.o)

Stephen Chong, Harvard University

Skipping assembly language

•Most C compilers generate machine code (object files) directly.
•That is, without actually generating the human-readable assembly file.

•Assembly language is mostly useful to people, not machines.

•Can generate assembly from C using “gcc -S”
•And then compile to an object file by hand using “gas”

 6

myprog.c myprog.s myprog.ogcc -S gas

gcc -c

Stephen Chong, Harvard University

Object files and executables

•C source file (myprog.c) is compiled into an object file (myprog.o)
•Object file contains the machine code for that C file.

•It may contain references to external variables and routines

•E.g., if myprog.c calls printf(), then myprog.o will contain a reference to printf().

•Multiple object files are linked to produce an executable file.
•Typically, standard libraries (e.g., “libc”) are included in the linking process.

•Libraries are just collections of pre-compiled object files, nothing more!

 7

myprog.c myprog.ogcc -c

somelib.c somelib.ogcc -c

myproglinker
(ld)

Stephen Chong, Harvard University

Characteristics of assembly language

•Assembly language is very, very simple.

•Simple, minimal data types
•Integer data of 1, 2, 4, or 8 bytes

•Floating point data of 4, 8, or 10 bytes

•No aggregate types such as arrays or structures!

•Primitive operations
•Perform arithmetic operation on registers or memory (add, subtract, etc.)

•Read data from memory into a register

•Store data from register into memory

•Transfer control of program (jump to new address)

•Test a control flag, conditional jump (e.g., jump only if zero flag set)

•More complex operations must be built up as (possibly long)
sequences of instructions.

 8

Stephen Chong, Harvard University

Assembly vs Machine Code

•We write assembly language instructions
•e.g., “addi $r1, $r2, 42”

•The machine interprets machine code bits
•e.g., “101011001100111…”

•Your first assignment is to build an interpreter for
a subset of the MIPS machine code.

•The assembler takes care of compiling assembly
language to bits for us.
•It also provides a few conveniences as we’ll see.

 9

Stephen Chong, Harvard University

MIPS

•MIPS is a RISC computer architecture developed 1985 onwards
•Multiple versions: MIPS I, II, III, IV, and V

•Designed as a general purpose processor

•Historically used in personal computers, workstations, servers,
video game consoles (Nintendo 64, Sony PlayStation, PlayStation 2, and PlayStation Portable),
supercomputers

•Currently used in embedded systems
•E.g., residential gateways and routers
•And many CS courses!

•Why are we using it?
•Relatively simple instruction set
•“The MIPS architecture may be the epitome of a simple, clean RISC

machine.” –James Larus
 10

Stephen Chong, Harvard University

Some MIPS Assembly

 11

int sum(int n) {
 int s = 0;
 for (; n != 0; n--)
 s += n;
 return s;
}

sum: ori $2,$0,$0
 b test
loop: add $2,$2,$4
 subi $4,$4,1
test: bne $4,$0,loop
 jr $31

int main() {
 return sum(42);
}

main: ori $4,$0,42
 move $17,$31
 jal sum
 jr $17

Stephen Chong, Harvard University

An X86 Example (-O0):

 12

_sum:
pushq %rbp
movq %rsp, %rbp
movl %edi, -4(%rbp)
movl $0, -8(%rbp)

LBB0_1:
cmpl $0, -4(%rbp)
je LBB0_4
movl -4(%rbp), %eax
addl -8(%rbp), %eax
movl %eax, -8(%rbp)
movl -4(%rbp), %eax
addl $-1, %eax
movl %eax, -4(%rbp)
jmp LBB0_1

LBB0_4:
movl -8(%rbp), %eax
popq %rbp
retq

_main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movl $42, %edi
movl $0, -4(%rbp)
callq _sum
addq $16, %rsp
popq %rbp
retq

Stephen Chong, Harvard University

An X86 Example (-O3):

 13

_sum:
pushq %rbp
movq %rsp, %rbp
testl %edi, %edi
je LBB0_1
leal -1(%rdi), %eax
leal -2(%rdi), %ecx
imulq %rax, %rcx
imull %eax, %eax
shrq %rcx
addl %edi, %eax
subl %ecx, %eax
popq %rbp
retq

LBB0_1:
xorl %eax, %eax
popq %rbp
retq

_main:
pushq %rbp
movq %rsp, %rbp
movl $903, %eax
popq %rbp
retq

Stephen Chong, Harvard University

MIPS

•Reduced Instruction Set Computer (RISC)
•Load/store architecture
• i.e., only memory operations are load and store

•All operands are either registers or constants
•All instructions same size (4 bytes) and aligned on 4-byte

boundary.
•Simple, orthogonal instructions
• e.g., no subi, (addi and negate value)

•All registers (except $0) can be used in all instructions.
• Reading $0 always returns the value 0

•Easy to make fast: pipeline, superscalar
 14

Stephen Chong, Harvard University

MIPS Datapath

 15

Stephen Chong, Harvard University

x86

•Complex Instruction Set Computer (CISC)
•Instructions can operate on memory values
• e.g., add [eax],ebx

•Complex, multi-cycle instructions
• e.g., string-copy, call

•Many ways to do the same thing
• e.g., add eax,1 inc eax sub eax,-1

•Instructions are variable-length (1-10 bytes)
•Registers are not orthogonal

•Hard to make fast…(but they do anyway)

 16

Stephen Chong, Harvard University

Tradeoffs

•x86 (as opposed to MIPS):
•Lots of existing software.
•Harder to decode (i.e., parse).
•Harder to assemble/compile to.
•Code can be more compact (3 bytes on avg.)
•I-cache is more effective…
•Easier to add new instructions.

•Todays implementations have the best of both:
•Intel & AMD chips suck in x86 instructions and compile

them to “micro-ops”, caching the results.
•Core execution engine more like MIPS.

 17

Stephen Chong, Harvard University

MIPS Registers and Usage Conventions

 18

A-24 Appendix A Assemblers, Linkers, and the SPIM Simulator

the stack pointer. The executing procedure uses the frame pointer to quickly
access values in its stack frame. For example, an argument in the stack frame can
be loaded into register $v0 with the instruction

 lw $v0, 0($fp)

 Register name Number Usage

 $zero 00 constant 0

 $at 01 reserved for assembler

 $v0 02 expression evaluation and results of a function

 $v1 03 expression evaluation and results of a function

 $a0 04 argument 1

 $a1 05 argument 2

 $a2 06 argument 3

 $a3 07 argument 4

 $t0 08 temporary (not preserved across call)

 $t1 09 temporary (not preserved across call)

 $t2 10 temporary (not preserved across call)

 $t3 11 temporary (not preserved across call)

 $t4 12 temporary (not preserved across call)

 $t5 13 temporary (not preserved across call)

 $t6 14 temporary (not preserved across call)

 $t7 15 temporary (not preserved across call)

 $s0 16 saved temporary (preserved across call)

 $s1 17 saved temporary (preserved across call)

 $s2 18 saved temporary (preserved across call)

 $s3 19 saved temporary (preserved across call)

 $s4 20 saved temporary (preserved across call)

 $s5 21 saved temporary (preserved across call)

 $s6 22 saved temporary (preserved across call)

 $s7 23 saved temporary (preserved across call)

 $t8 24 temporary (not preserved across call)

 $t9 25 temporary (not preserved across call)

 $k0 26 reserved for OS kernel

 $k1 27 reserved for OS kernel

 $gp 28 pointer to global area

 $sp 29 stack pointer

 $fp 30 frame pointer

 $ra 31 return address (used by function call)

FIGURE A.6.1 MIPS registers and usage convention.

Stephen Chong, Harvard University

MIPS Registers and Usage Conventions

 19

A-24 Appendix A Assemblers, Linkers, and the SPIM Simulator

the stack pointer. The executing procedure uses the frame pointer to quickly
access values in its stack frame. For example, an argument in the stack frame can
be loaded into register $v0 with the instruction

 lw $v0, 0($fp)

 Register name Number Usage

 $zero 00 constant 0

 $at 01 reserved for assembler

 $v0 02 expression evaluation and results of a function

 $v1 03 expression evaluation and results of a function

 $a0 04 argument 1

 $a1 05 argument 2

 $a2 06 argument 3

 $a3 07 argument 4

 $t0 08 temporary (not preserved across call)

 $t1 09 temporary (not preserved across call)

 $t2 10 temporary (not preserved across call)

 $t3 11 temporary (not preserved across call)

 $t4 12 temporary (not preserved across call)

 $t5 13 temporary (not preserved across call)

 $t6 14 temporary (not preserved across call)

 $t7 15 temporary (not preserved across call)

 $s0 16 saved temporary (preserved across call)

 $s1 17 saved temporary (preserved across call)

 $s2 18 saved temporary (preserved across call)

 $s3 19 saved temporary (preserved across call)

 $s4 20 saved temporary (preserved across call)

 $s5 21 saved temporary (preserved across call)

 $s6 22 saved temporary (preserved across call)

 $s7 23 saved temporary (preserved across call)

 $t8 24 temporary (not preserved across call)

 $t9 25 temporary (not preserved across call)

 $k0 26 reserved for OS kernel

 $k1 27 reserved for OS kernel

 $gp 28 pointer to global area

 $sp 29 stack pointer

 $fp 30 frame pointer

 $ra 31 return address (used by function call)

FIGURE A.6.1 MIPS registers and usage convention.

A-24 Appendix A Assemblers, Linkers, and the SPIM Simulator

the stack pointer. The executing procedure uses the frame pointer to quickly
access values in its stack frame. For example, an argument in the stack frame can
be loaded into register $v0 with the instruction

 lw $v0, 0($fp)

 Register name Number Usage

 $zero 00 constant 0

 $at 01 reserved for assembler

 $v0 02 expression evaluation and results of a function

 $v1 03 expression evaluation and results of a function

 $a0 04 argument 1

 $a1 05 argument 2

 $a2 06 argument 3

 $a3 07 argument 4

 $t0 08 temporary (not preserved across call)

 $t1 09 temporary (not preserved across call)

 $t2 10 temporary (not preserved across call)

 $t3 11 temporary (not preserved across call)

 $t4 12 temporary (not preserved across call)

 $t5 13 temporary (not preserved across call)

 $t6 14 temporary (not preserved across call)

 $t7 15 temporary (not preserved across call)

 $s0 16 saved temporary (preserved across call)

 $s1 17 saved temporary (preserved across call)

 $s2 18 saved temporary (preserved across call)

 $s3 19 saved temporary (preserved across call)

 $s4 20 saved temporary (preserved across call)

 $s5 21 saved temporary (preserved across call)

 $s6 22 saved temporary (preserved across call)

 $s7 23 saved temporary (preserved across call)

 $t8 24 temporary (not preserved across call)

 $t9 25 temporary (not preserved across call)

 $k0 26 reserved for OS kernel

 $k1 27 reserved for OS kernel

 $gp 28 pointer to global area

 $sp 29 stack pointer

 $fp 30 frame pointer

 $ra 31 return address (used by function call)

FIGURE A.6.1 MIPS registers and usage convention.

Stephen Chong, Harvard University

MIPS Instructions

•Arithmetic & logical instructions:
•add, sub, and, or, sll, srl, sra, …
•Register and immediate forms:
•add $rd, $rs, $rt
•addi $rd, $rs, <16-bit-immed>

•Any registers (except $0 returns 0)
•Also a distinction between overflow and no-overflow

(we’ll ignore for now.

 20

Stephen Chong, Harvard University

Detour: 2’s complement

•Representing non-negative integers in bits is
straightforward

•How do we represent negative integers in bits?
•Three common encodings:

•Sign and magnitude
•Ones’ complement
•Two’s complement

 21

Stephen Chong, Harvard University

Two’s complement

•If integer k is represented by bits b1...bn, then -k is
represented by 100...00 - b1...bn (where |100…00|=n+1)
•Equivalent to taking ones’ complement and adding 1
•E.g., using 4 bits:

• 6 = 0110

• -6 = 10000-0110 = 1010 = (1111-0110)+1
•Using n bits, can represent numbers 2n values

•E.g., using 4 bits, can represent integers 
 -8, -7, …, -1, 0, 1, …, 6, 7

•Like sign and magnitude and ones’ complement, first bit
indicates whether number is negative

 22

Stephen Chong, Harvard University

Properties of two’s complement

•Same implementation of arithmetic operations as for
unsigned
•E.g., addition, using 4 bits
• unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010

• two’s complement: 0001 + 1001 = 1 + -7 = -6 = 1010
•Only one representation of zero!

•Simpler to implement operations

•Not symmetric around zero
•Can represent more negative numbers than positive numbers

•Most common representation of negative integers

 23

Stephen Chong, Harvard University

Integer overflow

•Overflow can also occur with negative integers
•With 32 bits, maximum integer expressible in 2‘s

complement is 231-1 = 0x7fffffff

•0x7fffffff + 0x1 = 0x80000000 = -231

•Minimum integer expressible in 32-bit 2’s complement

•0x80000000 + 0x80000000 = 0x0

 24

Carnegie Mellon

52

?"$/);"D"*-&]*$"-*(+&F++"61*&

!  J.)5$&F.1/*+&
!  (U'*+.4'7.2'v'$0'

!  :*'2,7*',)/4'

>'

$0)

$0l!'

]F++gZ-&%&*[&

-"

*"

3./(&=/8&

C1+/;).&=/8&

DC4+�,V'

B<(.n1P&

Stephen Chong, Harvard University

Integer overflow

 25

Carnegie Mellon

56

?"$/);"D"*-&_`$&G185;(8(*#&F++"61*&

!  ?);/($&
!  `#NH*'*V,E7'/,23<'

!  ?@);4'U+,2'#c'*,'lS'

!  J.)5$&F.1/*+&
!  (U'7.2'''$0T!'

!  A4/,247')4;@0C4'

!  :*'2,7*',)/4'
!  (U'7.2'u'T$0T!'

!  A4/,247'3,7H0C4'

!  :*'2,7*',)/4'

3F++gZ-&%&*[&

-"

*"
E1$B<(.&

U(-B<(.&

Stephen Chong, Harvard University

Integer overflow

 26

Stephen Chong, Harvard University

Instruction encodings

•How instructions are represented in 4 bytes

•add $rd, $rs, $rt

 27

0 rs rt rd 0 0x20
6 5 5 5 5 6

32 bits

Stephen Chong, Harvard University

Instruction encodings

•How instructions are represented in 4 bytes
•add $rd, $rs, $rt

•addi $rt, $rs, <imm>

•More details in the SPIM Simulator manual

 28

0 rs rt rd 0 0x20
6 5 5 5 5 6

32 bits

8 rs rt imm
6 5 5 16

32 bits

Stephen Chong, Harvard University

Movement

•MIPS has no instruction to move contents of one
register to another
•But assembler provides pseudo-instructions

• move $rd, $rs  
becomes or $rd, $rs, $0

•Has instruction to load 16-bit immediate values
into registers, but not for 32-bit immediate. (Why?)
• li $rd, <32-bit-imm>  

becomes lui $rd, <hi-16-bits>  
 ori $rd, $rd, <lo-16-bits>

 29

Stephen Chong, Harvard University

Multiply and Divide Instructions

•Instructions to multiply
•mul $rd, $rs, $rt  

multiplies rs and rt (as signed integers), puts result in rd

•Any issues?
•Could overflow...

 30

Stephen Chong, Harvard University

Multiply and Divide Instructions

•Use two special register lo and hi (cannot be used as
arguments for instructions)

•mult $rs, $rt multu $rs, $rt  
multiplies rs and rt (as signed/unsigned integers), puts
result into lo and hi

•mflo $rd and mfhi $rd move contents of lo and hi
into register rd

•Also instructions madd, msub, etc. to multiply and add/
sub the result to lo and hi

•Divide operations use lo and hi to store the quotient
and remainder respectively.

 31

Stephen Chong, Harvard University

Load/Store Instructions

•Instructions to access memory
•lw $rd, <imm>($rs)  

loads contents of memory address rs+imm into rd

•sw $rs, <imm>($rt)  
stores register rs into memory address rt+imm

•Only one addressing mode! <imm>($rs)
•Traps (fails) if rs+imm is not word-aligned

•Other instructions to load bytes and half-words

 32

Stephen Chong, Harvard University

Comparisons

•slt $rd, $rs, $rt
•Set Less Than
•rd := (rs < rt), treating rs and rt as signed integers

•slti $rd, $rs, <imm16>
•Set Less Than Immediate
•rd := (rs < imm16), treating rs and imm16 as signed integers

•Additionally, unsigned versions: sltu, sltiu
•i.e., treating operands as unsigned integers

•Assembler provides pseudo-instructions for seq,
sge, sgeu, sgt, sne, …

 33

Stephen Chong, Harvard University

Conditional Branching

•beq $rs,$rt,<imm16>
•if $rs == $rt then pc := pc + imm16

•bne $rs,$rt,<imm16>
•b <imm16> == beq $0,$0,<imm16>
•bgez $rs, <imm16>

•if $rs ≥ 0 then pc := pc + imm16

•Also bgtz, blez, bltz
•Pseudo instructions:
•b<comp> $rs,$rt, <imm16>

 34

Stephen Chong, Harvard University

Labels

•Writing offsets for branches is difficult!
•Assembler lets us use symbolic labels instead
•Put a label on an instruction and then can

branch to it:

•Assembler figures out actual offsets.
•(How would you implement that?)

 35

 LOOP: ...
 bne $3, $2, LOOP

Stephen Chong, Harvard University

Unconditional Jumps

•j <imm26>
•Jump
•pc := (imm26 << 2)

•jr $rs
•Jump register

•pc := $rs

•jal <imm26>
•Jump and link. Used for calling functions. Puts the return address into $31
•$31 := pc+4 ; pc := (imm26 << 2)

•Also, jalr and a few others.

•Again, in practice, we use labels:

 36

fact: ...
main: ...  
 jal fact

Stephen Chong, Harvard University

Other Instructions

•Floating-point (separate registers $fi)
•Traps
•OS-trickery

 37

Stephen Chong, Harvard University

Back to example

 38

int sum(int n) {
 int s = 0;
 for (; n != 0; n--)
 s += n;
 return s;
}

sum: ori $2,$0,$0
 b test
loop: add $2,$2,$4
 subi $4,$4,1
test: bne $4,$0,loop
 jr $31

int main() {
 return sum(42);
}

main: ori $4,$0,42
 move $17,$31
 jal sum
 jr $17

Stephen Chong, Harvard University

Slightly better

 39

int sum(int n) {
 int s = 0;
 for (; n != 0; n--)
 s += n;
 return s;
}

sum: ori $2,$0,$0
 b test
loop: add $2,$2,$4
 subi $4,$4,1
test: bne $4,$0,loop
 jr $31

int main() {
 return sum(42);
}

main: ori $4,$0,42
 jal sum

Stephen Chong, Harvard University

SPIM Simulator

•We will program to the MIPS virtual machine which is
provided by the assembler.
•Lets us use macro instructions, labels, etc.
• (but we must leave a scratch register for the assembler to do its
work)

•Lets us ignore delay slots.
• (but then we pay the price of not scheduling those slots.)

•More information about SPIM and the MIPS instruction
set in  
 “Assemblers, Linkers, and the SPIM Simulator” 
 by James Larus  
 http://spimsimulator.sourceforge.net/HP_AppA.pdf

 40

http://spimsimulator.sourceforge.net/HP_AppA.pdf

