John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 10: Runtime Systems

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

AnNno

e Project 2 due today

*Project 3 out
e Due Tuesday Oct 9 (5 days)

*Project 4 out

e Due Thursc

Stephen Chong, Harvard University

ay Oct 25 (21 days)

To

e Garbage collection
*Key idea
e Mark and sweep
e Stop and copy
e Generational collection
* Reference counting
e Incremental collection, concurrent collection
e Boehm collector

* Work stealing
e Virtual machines

Stephen Chong, Harvard University 3

Runtime System

e Runtime system: all the stuff that the language implicitly
assumes and that is not described in the program

e Handling of POSIX signals

* POSIX = Portable Operating System Interface
* [EEE Computer Society standards for OS compatibility

e Automated memory management (garbage collection)

e Automated core management (work stealing)
Virtual machine execution (just-in-time compilation)

*Class loading

* Also known as “language runtime” or just “runtime”

Automated Memory Management

e | ast lecture we talked about memory
management

* Manual memory management: programmers explicitly
callmalloc () and free()

e Automatic memory management: runtime system looks
after allocation and garbage collection

e Garbage collection: free memory that is no
longer in use

Garbage Collection

e Runtime frees heap memory that is no longer in use
e How do we determine what is no longer in use?

e|deally: any piece of memory that will not be used
in the future of the computation

*|n practice: any piece of memory that is not
reachable

* Reachable = can be accessed through some chain of
pointers starting from program variables

e This is a subset of the memory that will not be used in the
future

Garbage Collection: Basic Idea

e Start from stack, registers, & globals (roots) and follow pointers to
determine which objects in heap are reachable

*Reclaim any object that isn't reachable

Sa0 @— v v Heap
global var @ e 4 v
\V
|V >V
Stack 4
-
o >
\ ~
v —Iy/

* Problem: How do we know which values are pointers and which are
non-pointers (e.g., ints)?

Identifying pointers

e OCaml uses the low bit: 1 it's a scalar, O it's a
pointer

*Why the low bit? Why not the high bit?
*|n Java, we put tag bits in the meta-data

°In C (e.g., Boehm collector), typically use
heuristics

e|f value doesn’t point into an allocated object, it's not a
pointer

Mark and Sweep Collector

e Reserve a mark-bit for each object.
* Mark phase

e Starting from roots, mark all accessible objects.

o Stick accessible objects into a queue or stack.
e queue: breadth-first traversal
- stack: depth-first traversal

| oop until queue/stack is empty:
 remove marked object (say x) from queue/stack
« if x points to an (unmarked) object y, then mark y and put it in the queue

e Sweep phase

e Consider each object:
- If it is not marked, put on the free list (i.e., deallocate it)
« If it is marked, clear the mark bit

Stop and Copy Collector

Split the heap into two pieces.

e Allocate in Tst piece until it fills up.

e Copy the reachable data into t
holes corresponding to garbage objects.

e Can now reclaim all of the 1st piece!
* Allocate in 2nd piece until it fills up

ne 2nd area, compressing out the

—

sto @1

Stl @—

\

—

—

/’

st2 @

1N

>
|

N\

Heap

Stop and Copy Collector

Split the heap into two pieces.
e Allocate in Tst piece until it fills up.

e Copy the reachable data into the 2nd area, compressing out the
holes corresponding to garbage objects.

e Can now reclaim all of the 1st piece!
* Allocate in 2nd piece until it fills up

o Heap

rad
$t0 @ i s ~
St1 @ >

St2 @ T \S

/|

Stop and Copy Collector

Split the heap into two pieces.
e Allocate in Tst piece until it fills up.

e Copy the reachable data into the 2nd area, compressing out the
holes corresponding to garbage objects.

e Can now reclaim all of the 1st piece!
* Allocate in 2nd piece until it fills up

o Heap

rad
$t0 @ > —> —p> —> <
Stl1 @

St2 @

Generational Collection

°|n many programs,

newly created objects are likely to die soon

e Conversely, objects that survive many collections will probably
survive many more collections

*So: collector shou
there is higher pro

d concentrate effort on “young” data (where

ortion of garbage)

*Key idea: Divide heap into generations

* Allocate new objects into generation Go

*Collect Gy frequently, G less frequently, G, even less so, ...

*|If object survives 2-3 collections in G;, copy it into Gjs1

* Roots now include pointers from older generations to younger ones

e Relatively rare

e But need mechanism to remember them

eKey idea: track how many pointers point to each object

* The reference count of the object, stored with object

Reference Counting

e Compiler modifies stores to increment/decrement reference counts

*|f reference count reaches 0O, free object!

$t0 @
St1 @

/

rd

St2 @

/'

Heap

Reference Counting

* Any problems!?
*\What about cycles of garbage?

*Require programmer to break cycles
e Or do occasional mark-sweep collection

Heap

P 3
N

$t0 @
St1 @

St2 @

Incremental Collection
Concurrent Collection

e Collector will occasionally interrupt program for
long periods of time for garbage collection

e Problem for interaction or realtime programs!

* Incremental collection performs some work on
garbage collection when the program requests it

* Concurrent collection performs garbage
collection concurrently with program

e Can greatly reduce latency!

Reality

| arge objects (e.g., arrays) can be copied “virtually" without a
ohysical copy.

e Some systems use mix of copying collection and mark/sweep
with compaction.

* A real challenge is scaling to server-scale systems with
terabytes of memory...

e nteractions with OS matter a lot: cheaper to do GC than to
start paging...
eJava has a variety of GCs available with different tradeoffs
e Default is generational collector that uses multiple threads when it runs

e OCaml uses a generational/incremental collector, invoked only
in allocation

Conservative Collectors

e Work without help from the compiler.

ee.g., legacy C/C++ code.

e Cannot accurately determine which values are
pointers.

*But can rule out some values (e.g., if they don't point into the
data segment.)

*So they must conservatively treat anything that looks

like a
e \What

nhointer as such.

nappens if we have a value we aren’t sure is a

pointer or not?

*Two bad things: leaks, can't move the object!

The Boehm Collector

e Based on mark/sweep.

 Performs sweep lazily

e Organizes free lists as we saw earlier.

e Different lists for different sized objects.

e Relatively fast (single-threaded) allocation.
* Most of the cleverness is in finding roots:

eolobal variables, stack, registers, etc.

* And determining values aren't pointers:

ee.g., blacklisting (recording values that aren’t pointers
but are in vicinity of heap)

Are We Done with

e Garbage collection takes care of managing an
Important resource: memory

* Work-stealing takes care of managing cores/
ProCessors

Stephen Chong, Harvard University 20

Work-Stealing

e Number of worker threads

eEFach thread has a work dequeue (double-ended
queue)

e Typically one or more threads per core

* A thread pushes and pops work from front of its
dequeue

*\When out of work, a thread steals work from
back of dequeue of randomly selected “victim”
thread

Work Stealing: Example

class Fibonaccli extends RecursiveTask<Integer> {

final int n;

Fibonacci(int n) { this.n = n; }

Integer compute() {
1f (n <= 1) return n;
Fibonacci fl1 = new Fibonacci(n - 1);
Fibonacci f2 = new Fibonacci(n - 2);
fl.fork();
f2.fork();
return fl.join() + f2.join();

}

* NB: This is a dumb Fibonacci to illustrate work-stealing

Comp

Fib(5)

Fib(4) Fib(3)
Fib(3) Fib(2) Fib(2) Fib(1)
Fib(2) Fib(l) Fib(1l) Fib(0) Fib(l) Fib(0)

/' \

Fib(1l) Fib(0)

Stephen Chong, Harvard University 23

Work Steals

Dequeue Dequeue Dequeue
Fib(5)
Worker Thread 1 Worker Thread 2 Worker Thread 3

Stephen Chong, Harvard University 24

Work Steals

Dequeue Dequeue Dequeue
Fib(4)
Fib(3)
Fib(5)
Worker Thread 1 Worker Thread 2 Worker Thread 3

Stephen Chong, Harvard University 25

Work Steals

Dequeue Dequeue Dequeue

Fib(4)

Fib(2)
Fib(1)

Fib(3)

Worker Thread 1 Worker Thread 2 Worker Thread 3

Stephen Chong, Harvard University 26

Work Steali

Dequeue

Fib(4)

Fib(2)
Fib(1)

Fib(3)

Worker Thread 1

Stephen Chong, Harvard University

Steals from
back of

queue of
randomly
picked

worker

Dequeue

Worker Thread 2

Dequeue

Worker Thread 3

27

Work Steals

Dequeue Dequeue Dequeue
Fib(3)
Fib(2) Fib(2)
Fib(1)
Fib(3) Fib(4)
Worker Thread 1 Worker Thread 2 Worker Thread 3

Stephen Chong, Harvard University 28

Virtual Machines

e Some languages are neither interpreted nor compiled to
native code

*|nstead the compiler generates code in a virtual
assembly language (called bytecode)

e At runtime, the bytecode is interpreted by a virtual
machine

e Sometimes, the runtime can compile important code
further to native code on the fly. This is called Just-In-
Time compilation

e Bytecode facilitates portability

e Bytecode typically easier to implement than full language

Exa

public class Hi {

public static void main(String[] args) {
System.out.println("Hi");

}

°*Running javac Hi.java generates Hi.class

Stephen Chong, Harvard University 30

Example:

Running javap -cp . -p Hi produces

Compiled from "Hi.java"
public class Hi {
public Hi();

Code:
0: aload 0
1: invokespecial #1 // Method java/lang/Object.”<init>":()V

4: return

public static void main(java.lang.String[]);

Code:
0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
3: 1ldc #3 // String Hi
5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return

°Iry running javap -cp . -v Hi to see more
details of the class file

Stephen Chong, Harvard University 31

Other Virtual Machines

e OCaml has a bytecode representation

* L LVM (a popular modern compiler) has a
bytecode representation

e Typically an intermediate representation en route to
native code

* Many dynamically-typed languages (JavaScript,
Python) have bytecode representations and use
JIT

