
CS153: Compilers
Lecture 10: Runtime Systems

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Project 2 due today
•Project 3 out

•Due Tuesday Oct 9 (5 days)

•Project 4 out
•Due Thursday Oct 25 (21 days)

 2

Stephen Chong, Harvard University

Today

•Garbage collection
•Key idea
•Mark and sweep
•Stop and copy
•Generational collection
•Reference counting
•Incremental collection, concurrent collection
•Boehm collector

•Work stealing
•Virtual machines

 3

Stephen Chong, Harvard University

Runtime System

•Runtime system: all the stuff that the language implicitly
assumes and that is not described in the program
•Handling of POSIX signals
• POSIX = Portable Operating System Interface
• IEEE Computer Society standards for OS compatibility

•Automated memory management (garbage collection)

•Automated core management (work stealing)
•Virtual machine execution (just-in-time compilation)

•Class loading
•…

•Also known as “language runtime” or just “runtime”
 4

Stephen Chong, Harvard University

Automated Memory Management

•Last lecture we talked about memory
management
•Manual memory management: programmers explicitly

call malloc() and free()
•Automatic memory management: runtime system looks

after allocation and garbage collection

•Garbage collection: free memory that is no
longer in use

 5

Stephen Chong, Harvard University

Garbage Collection

•Runtime frees heap memory that is no longer in use
•How do we determine what is no longer in use?
•Ideally: any piece of memory that will not be used

in the future of the computation
•In practice: any piece of memory that is not

reachable
•Reachable = can be accessed through some chain of

pointers starting from program variables
•This is a subset of the memory that will not be used in the

future

 6

Stephen Chong, Harvard University

Garbage Collection: Basic Idea

•Start from stack, registers, & globals (roots) and follow pointers to
determine which objects in heap are reachable

•Reclaim any object that isn't reachable 
 
 

•Problem: How do we know which values are pointers and which are
non-pointers (e.g., ints)?

 7

$a0

global_var

Stack

✔

✔

✔

✔

✔

✔

✔

✔

✔✔

Heap

Stephen Chong, Harvard University

Identifying pointers

•OCaml uses the low bit: 1 it's a scalar, 0 it's a
pointer
•Why the low bit? Why not the high bit?

•In Java, we put tag bits in the meta-data
•In C (e.g., Boehm collector), typically use

heuristics
•If value doesn’t point into an allocated object, it’s not a

pointer

 8

Stephen Chong, Harvard University

Mark and Sweep Collector

•Reserve a mark-bit for each object.
•Mark phase

•Starting from roots, mark all accessible objects.

•Stick accessible objects into a queue or stack.
• queue: breadth-first traversal
• stack: depth-first traversal

•Loop until queue/stack is empty:
• remove marked object (say x) from queue/stack

• if x points to an (unmarked) object y, then mark y and put it in the queue

•Sweep phase
•Consider each object:
• If it is not marked, put on the free list (i.e., deallocate it)

• If it is marked, clear the mark bit
 9

Stephen Chong, Harvard University

Stop and Copy Collector

•Split the heap into two pieces.

•Allocate in 1st piece until it fills up.
•Copy the reachable data into the 2nd area, compressing out the

holes corresponding to garbage objects.
•Can now reclaim all of the 1st piece!
•Allocate in 2nd piece until it fills up
•...

 10

$t0

$t1

$t2

Heap

Stephen Chong, Harvard University

Stop and Copy Collector

•Split the heap into two pieces.

•Allocate in 1st piece until it fills up.
•Copy the reachable data into the 2nd area, compressing out the

holes corresponding to garbage objects.
•Can now reclaim all of the 1st piece!
•Allocate in 2nd piece until it fills up
•...

 11

$t0

$t1

$t2

Heap

Stephen Chong, Harvard University

Stop and Copy Collector

•Split the heap into two pieces.

•Allocate in 1st piece until it fills up.
•Copy the reachable data into the 2nd area, compressing out the

holes corresponding to garbage objects.
•Can now reclaim all of the 1st piece!
•Allocate in 2nd piece until it fills up
•...

 12

$t0

$t1

$t2

Heap

Stephen Chong, Harvard University

Generational Collection

•In many programs, newly created objects are likely to die soon

•Conversely, objects that survive many collections will probably
survive many more collections

•So: collector should concentrate effort on “young” data (where
there is higher proportion of garbage)

•Key idea: Divide heap into generations
•Allocate new objects into generation G0
•Collect G0 frequently, G1 less frequently, G2 even less so, ...
•If object survives 2-3 collections in Gi, copy it into Gi+1

•Roots now include pointers from older generations to younger ones
•Relatively rare
•But need mechanism to remember them

 13

Stephen Chong, Harvard University

Reference Counting

•Key idea: track how many pointers point to each object
•The reference count of the object, stored with object
•Compiler modifies stores to increment/decrement reference counts
•If reference count reaches 0, free object!

 14

$t0

$t1

$t2

Heap
01 12 1

Stephen Chong, Harvard University

Reference Counting

•Any problems?
•What about cycles of garbage?

•Require programmer to break cycles
•Or do occasional mark-sweep collection

 15

$t0

$t1

$t2

Heap
1 1

1

2

Stephen Chong, Harvard University

Incremental Collection  
Concurrent Collection

•Collector will occasionally interrupt program for
long periods of time for garbage collection
•Problem for interaction or realtime programs!

•Incremental collection performs some work on
garbage collection when the program requests it

•Concurrent collection performs garbage
collection concurrently with program

•Can greatly reduce latency!

 16

Stephen Chong, Harvard University

Reality

•Large objects (e.g., arrays) can be copied “virtually" without a
physical copy.

•Some systems use mix of copying collection and mark/sweep
with compaction.

•A real challenge is scaling to server-scale systems with
terabytes of memory…

•Interactions with OS matter a lot: cheaper to do GC than to
start paging…

•Java has a variety of GCs available with different tradeoffs
•Default is generational collector that uses multiple threads when it runs

•OCaml uses a generational/incremental collector, invoked only
in allocation

 17

Stephen Chong, Harvard University

Conservative Collectors

•Work without help from the compiler.
•e.g., legacy C/C++ code.

•Cannot accurately determine which values are
pointers.
•But can rule out some values (e.g., if they don't point into the

data segment.)

•So they must conservatively treat anything that looks
like a pointer as such.

•What happens if we have a value we aren’t sure is a
pointer or not?
•Two bad things: leaks, can't move the object!

 18

Stephen Chong, Harvard University

The Boehm Collector

•Based on mark/sweep.
•Performs sweep lazily

•Organizes free lists as we saw earlier.
•Different lists for different sized objects.

•Relatively fast (single-threaded) allocation.

•Most of the cleverness is in finding roots:
•global variables, stack, registers, etc.

•And determining values aren't pointers:
•e.g., blacklisting (recording values that aren’t pointers

but are in vicinity of heap)
 19

Stephen Chong, Harvard University

Are We Done with Runtimes?

•Garbage collection takes care of managing an
important resource: memory

•Work-stealing takes care of managing cores/
processors

 20

Stephen Chong, Harvard University

Work-Stealing

•Number of worker threads
•Each thread has a work dequeue (double-ended

queue)
•Typically one or more threads per core

•A thread pushes and pops work from front of its
dequeue

•When out of work, a thread steals work from
back of dequeue of randomly selected “victim”
thread

 21

Stephen Chong, Harvard University

Work Stealing: Example

•NB: This is a dumb Fibonacci to illustrate work-stealing
 22

class Fibonacci extends RecursiveTask<Integer> {  
 final int n;
 Fibonacci(int n) { this.n = n; }
 Integer compute() {
 if (n <= 1) return n;
 Fibonacci f1 = new Fibonacci(n - 1);
 Fibonacci f2 = new Fibonacci(n - 2);
 f1.fork();
 f2.fork();
 return f1.join() + f2.join();
 }
}

Stephen Chong, Harvard University

Computation Tree

 23

Fib(3)

Fib(1)Fib(2)

Fib(1) Fib(0)

Fib(4)

Fib(2)

Fib(1) Fib(0)

Fib(3)

Fib(1)Fib(2)

Fib(1) Fib(0)

Fib(5)

Stephen Chong, Harvard University

Work Stealing: Example

 24

Fib(5)

Worker Thread 1

Dequeue

Worker Thread 2

Dequeue

Worker Thread 3

Dequeue

Stephen Chong, Harvard University

Work Stealing: Example

 25

Fib(5)

Worker Thread 1

Dequeue

Worker Thread 2

Dequeue

Worker Thread 3

Dequeue

Fib(4)

Fib(3)

Stephen Chong, Harvard University

Work Stealing: Example

 26

Fib(3)

Worker Thread 1

Dequeue

Worker Thread 2

Dequeue

Worker Thread 3

Dequeue

Fib(4)

Fib(2)
Fib(1)

Stephen Chong, Harvard University

Work Stealing: Example

 27

Fib(3)

Steals from
back of
queue of
randomly
picked
worker

Fib(4)

Fib(2)

Worker Thread 1

Dequeue

Worker Thread 2

Dequeue

Worker Thread 3

Dequeue

Fib(1)

Stephen Chong, Harvard University

Work Stealing: Example

 28

Worker Thread 1

Dequeue

Worker Thread 2

Dequeue

Worker Thread 3

Dequeue

Fib(3) Fib(4)

Fib(2)
Fib(1)

Fib(3)

Fib(2)

Stephen Chong, Harvard University

Virtual Machines

•Some languages are neither interpreted nor compiled to
native code

•Instead the compiler generates code in a virtual
assembly language (called bytecode)

•At runtime, the bytecode is interpreted by a virtual
machine

•Sometimes, the runtime can compile important code
further to native code on the fly. This is called Just-In-
Time compilation

•Bytecode facilitates portability
•Bytecode typically easier to implement than full language

 29

Stephen Chong, Harvard University

Example: Java

•Running javac Hi.java generates Hi.class

 30

public class Hi {

 public static void main(String[] args) {
 System.out.println("Hi");
 }

}

Stephen Chong, Harvard University

Example: Java

•Running javap -cp . -p Hi produces

•Try running javap -cp . -v Hi to see more
details of the class file

 31

Compiled from "Hi.java"
public class Hi {
 public Hi();
 Code:
 0: aload_0
 1: invokespecial #1 // Method java/lang/Object.”<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #3 // String Hi
 5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
}

Stephen Chong, Harvard University

Other Virtual Machines

•OCaml has a bytecode representation
•LLVM (a popular modern compiler) has a

bytecode representation
•Typically an intermediate representation en route to

native code

•Many dynamically-typed languages (JavaScript,
Python) have bytecode representations and use
JIT

 32

