
CS153: Compilers
Lecture 13:
Functional Programming Optimization

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Project 4 out
•Due Thursday Oct 25 (9 days)

•Project 5 out
•Due Tuesday Nov 13 (28 days)

•Project 6 will be released next week

 2

Stephen Chong, Harvard University

Today

•Functional programming optimization
•Decurryfication
•Inlining
•Tail call elimination
•Lazy evaluation

 3

Stephen Chong, Harvard University

Optimization

•Start of a series of lectures on optimization and analysis
•Today: Opportunities for optimizing functional programs!

•Some at source level, some at code generation level...

 4

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end

Stephen Chong, Harvard University

Decurryfication

•Turn sequence of functions into tuples
•E.g., convert 
 let add = fun x -> fun y -> x + y  
to 
 let add = fun (x, y) -> x + y

•When is this applicable? Not applicable?
•Can’t use when nested function is used by itself

•What are the potential benefits?
•Remove overhead of closure for the nested function
•Tuple of arguments can be handled efficiently in registers

 5

Stephen Chong, Harvard University

Inlining

•Consider the function f(a1,...,an) = e
•We can inline the function where it is used

•If E is a context, we can rewrite  
 E[f(v1,...,vn)]  
to 
 E[e[a1↦v1,...,an↦vn]]  
 
(where e[a1↦v1,...,an↦vn] is expression e with var ai replaced with value vi)

•E.g., g(x,y) = 1+x+y+y  
Can rewrite 4+g(12,3)*2 to 4+(1+12+3+3)*2

 6

Stephen Chong, Harvard University

Inlining

•Consider the function f(a1,...,an) = e
•We can inline the function where it is used

•If E is a context, we can rewrite  
 E[f(v1,...,vn)]  
to 
 E[e[a1↦v1,...,an↦vn]]

•What is the benefit?
•Avoids overhead of function call (stack frame allocation, saving registers, etc.)
•Specializes function body to actual argument. Enables additional

optimizations!

•When is it applicable? Not applicable?
•Is applicable to recursive functions, but just not well... (more soon)
•What if arguments are expressions?

 7

Stephen Chong, Harvard University

Inlining 2

•What if arguments of f are non-trivial?
•If E is a context, we can rewrite  
 E[f(e1,...,en)]  
to 
 E[let x1=e1 and ... and xn=en  
 in e[a1↦x1,...,an↦xn]]  
where x1,...,xn are fresh variables

•Note: given double(y) = y + y inlining in double(g())  
produces let x = g() in x + x  
does not produce g() + g()!
•Why is the distinction important?

 8

Stephen Chong, Harvard University

Inlining recursive functions

•Consider recursive function, e.g.,  
f(x,y) = if x < 1 then y  
 else x * f(x-1,y)

•If we inline it, we essentially just unroll one call:
•f(z,8) + 7  

becomes  
(if z < 0 then 8 else z*f(z-1,8)) + 7

•Can’t keep on inlining definition of f; will never stop!

•But can still get some benefits of inlining by
slight rewriting of recursive function...

 9

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

•Rewrite function to use a loop pre-header  
 
becomes

•E.g.,

 10

function f(a1,...,an) = e

function f(a1,...,an) =
 let function f’(a1,...,an) = e[f↦f']  
 in f’(a1,...,an)

function f(x,y) = if x < 1 then y else x * f(x-1,y)

function f(x,y) =
 let function f’(x,y) = if x < 1 then y  
 else x * f’(x-1,y)
 in f’(x,y)

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

•Remove loop-invariant arguments
•e.g., y is invariant in calls to f’

 11

function f(x,y) =
 let function f’(x,y) = if x < 1 then y  
 else x * f’(x-1,y)
 in f’(x,y)

function f(x,y) =
 let function f’(x) = if x < 1 then y  
 else x * f’(x-1)
 in f’(x)

Stephen Chong, Harvard University

Rewriting Recursive Functions for
Inlining

•Now inlining recursive function is more useful!
•E.g., 6+f(4,5) becomes

 12

function f(x,y) =
 let function f’(x) = if x < 1 then y  
 else x * f’(x-1)
 in f’(x)

6 + (let function f’(x) =
 if x < 1 then 5  
 else x * f’(x-1)
 in f’(4))

Stephen Chong, Harvard University

When to Inline

•Inlining functions can explode the size of the code!
•Why?

•So when to inline a function?
•Some heuristics:

•Expand only function call sites that are called frequently
•Determine frequency by execution profiler or by approximating
statically (e.g., loop depth)

•Expand only functions with small bodies
•Copied body won’t be much larger than code to invoke function

•Expand functions that are called only once
•Dead function elimination will remove the now unused function

 13

Stephen Chong, Harvard University

Tail Call Elimination

•Consider the two recursive functions

•First function: after recursive call to add, still
have computation to do (add 1)

•Second function: after recursive call, nothing to
do but return to caller

 14

let rec add(m,n) = if (m = 0) n else 1 + add(m-1,n)

let rec add(m,n) = if (m=0) n else add(m-1,n+1)

Stephen Chong, Harvard University

Tail Call Elimination

•Can reuse stack frame!
•Don’t need to allocate new stack frame for recursive call

•Values of arguments (n, m) can remain in registers
•The function call becomes a single jump

•No memory access required

•Combined with inlining, a recursive function can
become as cheap as a while loop

•Even for non-recursive functions: if last statement is
function call (tail call), can still reuse stack frame

 15

let rec add(m,n) = if (m=0) n else add(m-1,n+1)

Stephen Chong, Harvard University

Leaf Functions

•Leaf functions don’t call other functions
•In call tree, these are leaf nodes

•If leaf function needs only caller-save registers,
don’t need a stack frame at all!
•Significant savings!

 16

Stephen Chong, Harvard University

Lazy Evaluation

•In lazy languages (e.g., Haskell), computation is delayed
until needed

•E.g., let f x y = if x < 0 then 0 else y  
 f -42 (fact 10000)
•fact 10000 will never be computed, since -42 < 0, argument
y is never needed

•Lazy evaluation can save unnecessary computation
•But:

•If computation has side-effects (modifying memory, failing to
terminate, etc.) program behavior may be difficult to predict

•Delayed computations that are never used may end up using a lot
of memory

 17

Stephen Chong, Harvard University

Summary

•We saw a collection of techniques for optimizing
functional programs
•Decurryfication
•Inlining
•Tail call elimination
•Lazy evaluation

•More next week...

 18

