John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 13:

Functional Programming Optimization

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Annou

*Project 4 out
e Due Thursday Oct 25 (9 days)

*Project 5 out
e Due Tuesday Nov 13 (28 days)

*Project 6 will be released next week

Stephen Chong, Harvard University 2

 Functional programming optimization
e Decurryfication
Inlining
eTail call elimination
e|lazy evaluation

Stephen Chong, Harvard University 3

Optimiz

o Start of a series of lectures on optimization and analysis

e Today: Opportunities for optimizing functional programs!

e Some at source level, some at code generation level...

(Source CodeJ
-\

[Parsing }

"

b\
[Optimization

A A

l“ [Code Generation}
el R

el { Target CodeJ

Stephen Chong, Harvard University

Decurrytication

* Turn sequence of functions into tuples

ef.g., convert
let add

fun x -> fun y -> x + vy
to
let add = fun (X, yv) -=> X + vy

*\When is this applicable? Not applicable?

e Can't use when nested function is used by itself

*\What are the potential benefits?

e Remove overhead of closure for the nested function
e Tuple of arguments can be handled efficiently in registers

Inli

eConsider the function £(a1, ...,an) = e
e\We can inline the function where it is used

olf E is a context, we can rewrite
E[£(Vi,eee,;Vn)]
to
E[] e[ai”Vi;eee,an>Vn]]

(where e[a1~V1, . ..,an~Vna] is expression e with var a; replaced with value v;)

°E.g., g(x,y) = l+x+y+y
Can rewrite 4+g(12,3)*2 to 4+ (1+12+3+3) *2

Stephen Chong, Harvard University 6

Inlinin

eConsider the function f£(ai, ...,an) = e
e\We can inline the function where it is used

olf E is a context, we can rewrite
E[£(Vi,eee,;Vn)]
to
E[e[aiPVi,e.ee,an>Vn]]
eWhat is the benefit?

e Avoids overhead of function call (stack frame allocation, saving registers, etc.)

eSpecializes function body to actual argument. Enables additional
optimizations!

*When is it applicable? Not applicable?

els applicable to recursive functions, but just not well... (more soon)
eWhat if arguments are expressions?

Stephen Chong, Harvard University 7

Inlining

*What if arguments of £ are non-trivial?

olf E is a context, we can rewrite
E[f(ei1,+..,€n)]
to
E[let x1=e; and ... and Xp=ej
in e[ai1PX1, e e« ,an~>Xn]]
where x1,...,xn are fresh variables

*Note: given double(y) = y + yinlining in double(g())
produces let x = g() in x + X
does not produce g() + g()!

e Why is the distinction important?

Stephen Chong, Harvard University 8

Inlining recursive functions

e Consider recursive function, e.g.,
f(x,y) = 1f x < 1 then vy
else x * £(x-1,v)
lf we inline it, we essentially just unroll one call:
*f(z,8) + 7
becomes
(1f z < 0 then 8 else z*f(2z-1,8)) + 7

eCan’t keep on inlining definition of £; will never stop!

e But can still get some benefits of inlining by
slight rewriting of recursive function...

Rewriting Recursive Functions for

Inlining
e Rewrite function to use a loop pre-header
function f(ai,...,an) = e
becomes

function f(ai,...,an) =
let function f’'(ai,...,an) = e[f—f']
in f'(al,...,an)

‘E.g., function f£(x,y) = 1f x < 1 then y else x * f(x-1,y)

function f(x,y) =
let function f’'(x,y) = if x < 1 then y
else x * £’ (x-1,v)
in £'(x,y)

Rewriting Recursive Functions for
Inlining

function f(x,y) =
let function f’'(Xx,y) = 1f x < 1 then y
else x * £f'(x-1,vy)
in £'(x,y)

e Remove loop-invariant arguments

°e.g., y is invariant in calls to £’

function f(x,y) =
let function f’'(x) = 1f x < 1 then vy
else x * £’ (x-1)
in £’ (x)

Rewriting Recursive Functions for
Inlining

function f(x,y) =
let function f’'(x) = 1f x < 1 then vy

else x * £’ (x-1)
in £’ (x)

* Now inlining recursive function is more useful!
°E.g., 6+f(4,5) becomes

6 + (let function f’(x) =
1f x < 1 then 5
else x * £’ (x-1)

in £'(4))

When to Inline

eInlining functions can explode the size of the code!
*Why?
*So when to inline a function?

e Some heuristics:
eExpand only function call sites that are called frequently

 Determine frequency by execution profiler or by approximating
statically (e.g., loop depth)

e Expand only functions with small bodies

* Copied body won’t be much larger than code to invoke function

e Expand functions that are called only once

* Dead function elimination will remove the now unused function

Tail Call Elimination

e Consider the two recursive functions

let rec add(m,n) = 1f (m = 0) n else 1 + add(m-1,n)

let rec add(m,n) = 1f (m=0) n else add(m-1,n+1)

e First function: after recursive call to add, still
have computation to do (add 1)

* Second function: after recursive call, nothing to
do but return to caller

Tail Call Elimination

let rec add(m,n) = 1f (m=0) n else add(m-1,n+1)

e Can reuse stack frame!
e Don’t need to allocate new stack frame for recursive call

*Values of arguments (n, m) can remain in registers

e The function call becomes a single jump
*No memory access required

e Combined with inlining, a recursive function can
become as cheap as a while loop

e Even for non-recursive functions: if last statement is
function call (tail call), can still reuse stack frame

Leaf Functi

e Leaf functions don’t call other functions

°In call tree, these are leaf nodes

o|f [eaf function needs only caller-save registers,
don’t need a stack frame at all!

*Significant savings!

Stephen Chong, Harvard University 16

Lazy Evaluation

*In lazy languages (e.g., Haskell), computation is delayed
until needed

°k.g., let f x vy 1f x < 0 then 0 else y
f -42 (fact 10000)

efact 10000 will never be computed, since -42 < 0, argument
y is never needed

| azy evaluation can save unnecessary computation

e But:

e|f computation has side-effects (moditying memory, failing to
terminate, etc.) program behavior may be difficult to predict

e Delayed computations that are never used may end up using a lot
of memory

Sum

*We saw a collection of techniques for optimizing
functional programs

e Decurryfication
°Inlining
e Tail call elimination

el azy evaluation

e More next week...

Stephen Chong, Harvard University 18

