John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 14: Type Checking

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Annou

*Project 4 out
e Due Thursday Oct 25 (7 days)

*Project 5 out
e Due Tuesday Nov 13 (26 days)

*Project 6 will be released Tuesday

Stephen Chong, Harvard University 2

* Type checking
* Type inference

Stephen Chong, Harvard University 3

Basic Architecture

(Source CodeJ
Y

[Parsing }

A

A
[Optimization

A o
s [Code Generation}
Y

e { Target CodeJ

[Elaboration j)

-

~

Untyped Abstract

-

Syntax Trees
/

Typed Abstract
Syntax Trees

~

v

Undefined Progr

* After parsing, we have AS
*\We can interpret AST, or compile it and execute

e But: not all programs are well defined
°E.g., 3/0, “hello” - 7,42(19)
* Types allow us to rule out many of these undefined behaviors

*Types can be thought of as an approximation of a computation

eE.g., if expression e has type int, then it means that e will evaluate
to some integer value

°E.g., we can ensure we never treat an integer value as if it were a
function

Stephen Chong, Harvard University

Type Soundness

*Key idea: a well-typed program when executed does not attempt
any undefined operation

* Make a model of the source language
*i.e., an interpreter, or other semantics
eThis tells us were operations are partial
e Partiality is different for different languages
*E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages
* Construct a function to check types: tc : AST -> bool

e AST includes types (or type annotations)

°If tc e returns true, then interpreting e will not result in an undefined
operation

e Prove that tc is correct

Simple Language

type tipe =

Int t

Arrow t of tipe*tipe
Pair t of tipe*tipe

type exp =

Var of var | Int of int
Plus 1 of exp*exp

Lambda of var * tipe * exp

Note: function

arguments have

App of exp*exp type annotation

Pair of exp * exp
Fst of exp | Snd of exp

Interpreter

let rec interp (env:var->value) (e:exp) =
match e with
Var X -> env X
Int i -=> Int v 1
Plus i(el,e2) ->
(match interp env el, interp env e2 of
| Int v i, Int v j => Int v(i+])
| _,_ —-> error())
| Lambda(x,t,e) -> Closure v{env=env,code=(x,e)}
| App(el,e2) ->
(match (interp env el, interp env e2) with
| Closure v{env=cenv,code=(x,e)},v ->
interp (extend cenv x v) e
| _,_ —-> error())

Type Chec

let rec tc (env:var->tipe) (e:exp) =
match e with
Var x =-> env X
Int -> Int t
Plus i(el,e2) ->
(match tc env el, tc env e with
| Int t, Int t -> Int t
| _,_ —-> error())
| Lambda(x,t,e) -> Arrow t(t,tc (extend env x t) e)
| App(el,e2) ->
(match (tc env el, tc env e2) with
| Arrow t(tl,t2), t ->
1if (tl1 != t) then error() else t2
| _,_ —-> error())

Stephen Chong, Harvard University 10

Notes

* Type checker is almost like an approximation of the
Interpreter!

e But interpreter evaluates function body only when function

ap
oTy

o \\Ve

nlied

e checker always checks body of function

needed to assume the input of a function had some

type t1, and reflect this in type of functio

N (t1->t)2)

o At call site (e1 e3z), we don’t know what closure e; will
evaluate to, but can calculate type of e1 and check that
e has type of argument

Growing the Language

* Adding booleans...

type tipe = ... | Bool t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e =

True -> True v

False -> False v

If(el,e2,e3) -> (match interp env el with
True v -> 1nterp env e2
False v -> interp env e3
-> error())

Type C

let rec tc (env:var->tipe) (e:exp) =
match e with
True -> Bool t
False -> Bool t
If(el,e2,e3) ->
(let (tl,t2,t3) = (tc env el,tc env e2,tc env e3)
in
match tl1 with
| Bool t ->
1if (t2 != t3) then error() else t2
| -=> error())

Stephen Chong, Harvard University 13

Type Inference

e Type checking is great if we already have enough type
annotations

e For our simple functional language, sufficed to have type
annotations for function arguments

Sut w

nat about I

ey id

ea: we wil

- we tried to infer types?

“guess” each missing type annotation, and

update our guess based on how the program uses that
function and function argument

let rec tc

(env: (var*tipe) list) (e:exp) =

match e with
| Lambda(x,e) ->
(let t = guess() 1in
Arrow t(t,tc (extend env x t) e))

Extend Types with Guesses

* A guess represents an initially unknown type

e Type inference will update the type as it gets more

information
type tipe =
Int t

Arrow t of tipe*tipe
Guess of (tipe option ref)

fun qguess() = Guess(ref None)

Must Handle Guesses

| Lambda(x,e) -> let t = guess()
in Arrow t(t,tc (extend env x t) e)
| App(el,e2) -> (match tc env el, tc env e2 with
| Arrow t(tl,t2), t ->
(match tl1 with
| Guess g -> (match !g with

| None -> g := t; t2
| Some t1 -> if tl1 != t
then error() else t2)
| -> if tl1 != t then error() else t2)
| Guess g, t -> (match !g with
| None -> let t2 = guess() in
g := Some(Arrow t(t,t2)); t2)

| Some tl -> if tl1 != t then error() else t2)

Cleaner Versi

let rec tc (env: (var*tipe) list) (e:exp) =
match e with
Var x -> lookup env X
Lambda(x,e) ->
let t = guess() 1n
Arrow t(t,tc (extend env x t) e)
| App(el,e2) ->

let (tl1,t2) = (tc env el, tc env e2) in
let t = guess|()
in

1f unify tl1 (Arrow t(t2,t)) then t
else error()

Stephen Chong, Harvard University 17

Unification

let rec unify (tl:tipe) (t2:tipe):bool =
1f (tl == t2) then true else
match tl1,t2 with
Guess(ref(Some t1')), -> unify t1’' t2
Guess(r as (ref None)), t2 ->
(r := Some t2; true)
_, Guess() -> unify t2 t1l
Int £, Int t -> true
Arrow t(tla,tlb), Arrow t(t2a,t2b)) ->
unify tla t2a && unify tlb t2b

Subtlety

eConsider: fun x -> x X

*We guess gl for x
*\We see App (X, X)
*recursive calls say we have t1=g1l and t2=g1
*\We guess g2 for the result.
°And unify(gl,Arrow t(gl,g2))
°Sowe setgl := Some(Arrow t(gl,g2))
*\What happens if we print the type?

Fixes

e Do an “occurs” check in unify:
let rec unify (tl:tipe) (t2:tipe):bool =
1f (tl == t2) then true else
case (tl,t2) of
(Guess(r),) when !r = None ->
1f occurs r t2 then error()
else (r := Some t2; true)

e Alternatively, be careful not to loop anywhere.

*In particular, when considering the cases for (t1, t2), make
sure it doesn’t go into an infinite loop

Polymorphi

eConsider: fun x -> x

*\We guess gl for x
*\We see x
*So gl is the result.
*We return Arrow t(gl,gl)
°*gl is unconstrained

*\We could constraint itto Int t or
Arrow_t(Int_t,Int t) orany type.

e|n fact, we could re-use this code at any type!

Stephen Chong, Harvard University 21

ML Exp

type exp =

Var of var

Int of int

Lambda of var * exp
App of exp*exp

Let of var * exp * exp

let £ = fun x -> x 1in (f 3, £ “foo0”)

Stephen Chong, Harvard University 22

Naive ML Type Inference

let rec tc (env: (var*tipe) list) (e:exp) =
match e with
Var x -> lookup env X
Lambda(x,e) ->
let t = guess() 1in
Arrow t(t,tc (extend env x t) e) end
‘ App(el,e2) ->
let (tl1,t2) = (tc env el, tc env e2) 1in
let t = guess|()
in if unify t1 (Fn t(t2,t)) then t
else error()
| Let(x,el,e2) ->
(tc env el; tc env (substitute(el,x,e2))

let 1d = fn x -> x
in

(1d 3, 1d "fred")
end

is type checked as if it were

((fun x -> x) 3, (fun x -> x) "fred")

Stephen Chong, Harvard University 24

Effects

e But this can be inefficient!

* And in a type system that considers eftects, does
not accurately reflect how the program executes

let 1d = (print "Hello"; fn x -> X)
in
(1d 42, i1d "fred”)

is not equivalent to

((print "Hello";fn x->x) 42,
(print "Hello";fn x->x) "fred")

Hindley-Milner Type Inference

* Polymorphism is the ability of code to be used on values of different
types.

*E.g., polymorphic function can be invoked with arguments of different types
* Polymorph means “many forms”

e OCaml has polymorphic types
°e.g.,val swap : 'a ref -> 'a -> ‘a = ...

e But type inference for full polymorphic types is undecidable...

e OCaml has restricted form of polymorphism that allows type
inference: let-polymorphism aka prenex polymorphism
e Allow let expressions to be typed polymorphically, i.e., used at many types
e Doesn’t require copying of let expressions

eRequires clear distinction between polymorphic types and non-
polymorphic types...

Hindley-Milner Type Inference

type tvar = string

Type variables

are placeholders
for types

type tipe
Int €t

Arrow t of tipe*tipe
Guess of (tipe option ref)

Var t of tvar
Type schemes are
type tipe scheme = polymorphic types

Forall of (tvar list * tipe)

ML Type Inference

let rec tc (env:(var*tipe scheme) list) (e:exp) =
match e with

Var X -> instantiate(lookup env Xx)
Int -> Int t
Lambda(x,e) ->
let g = guess() 1n
Arrow t(g,tc (extend env x (Forall([],g9)) e)
‘ App(el,e2) ->
let (tl,t2,t) = (tc env el,tc env e2,guess())

in 1f unify(tl,Fn t(t2,t)) then t else error()
| Let(x,el,e2) ->

let s = generalize(env,tc env el) 1in

tc (extend env X s) e2 end

Insta

let instantiate(s:tipe scheme):tipe =
match s with
| Forall(vs,t) ->
let b = map (fn a -> (a,guess()) vs 1n
substitute (b, t)

Stephen Chong, Harvard University 29

(Generalization

let generalize(e:env,t:tipe):tipe scheme
let t gs = guesses of tipe t 1n
let env list gs =

map (fun (x,s) -> guesses of s) e 1in
let env gs = foldl union empty env 1list gs

let diff = minus t gs env _gs 1in
let gs vs =

map (fun g -> (g,freshvar())) diff in

let tc = subst guess(gs vs,t)
in
Forall (map snd gs vs, tc)
end

eEvery variab

universally ©

Explanation

e in environment maps to a type scheme, i.e.,
uantified type, possibly with empty list of quantifiers

eEach let-bound variable is generalized

°E.g., g->g generalizes to Forall a. a->a

eEach use of let-bound variable is instantiated with fresh guesses

eE.g., if f:Forall a. a->a, thenif £ e, we instantiate the type of £ to
g->g for some fresh guess g

*But only generalize variables that appear only in let and not in

environment

eVariables in
function

environment may be later constrained, e.g.,
f(y) = let g = fn x -> (%X, y) in (g y + 7)

* In expression fn x -> (x, y) can generalize for type of x, but not for

type of y

Difficulties

let r = ref (fun x -> X)
(* r : Forall 'a: ref('a->"a) *)
in
r := (fun x -> x+1); (* r: ref(int->1int) *)
(!r)("fred") (* r: ref(string->string) *)

Stephen Chong, Harvard University 32

Value Restriction

*When is 1let x=el in e2 equivalentto
subst(el,x,e2)?
°|f el has no side effects:

e reads/writes/allocation of refs/arrays.
°* input, output.

e non-termination.

*So only generalize when el is a value

eor something easy to prove equivalent to a value

Real Algori

let rec tc (env:var->tipe scheme) (e:exp) =
match e with
Let(x,el,e2) ->
let s =
1f may have effects el then
Forall([],tc env el)
else generalize(env,tc env el)

in
tc (extend env x s) e2
end

Stephen Chong, Harvard University 34

