John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 15: Local Optimization

HARVARD

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Announ

*Project 4 out
e Due Thursday Oct 25 (2 days)

*Project 5 out
e Due Tuesday Nov 13 (21 days)

*Project 6 will be released today
e Due Tuesday Nov 20 (28 days)

Stephen Chong, Harvard University 2

Toda

e Tour of many optimizations
 Algebraic simplification
 Constant folding

e Strength reduction

e Constant propagation

* Copy propagation

e Dead-code elimination

e Common sub-expression elimination
e oop fusion, deforestation

e Flattening/unboxings

Stephen Chong, Harvard University 3

Optimization

e \Want to rewrite code so that it's:

efaster, smaller, consumes less power, etc.

*while retaining the "observable behavior"

» usually: input/output behavior

e often need analysis to determine that a given optimization
preserves behavior.

e often need profile information to determine that a given
optimization is actually an improvement.

e Often have two flavors of optimization:

ehigh-level: e.g., at the AST-level (e.g., inlining)

*low-level: e.g., right before instruction selection (e.g., register
allocation)

Basic Architecture

(Source CodeJ
Y

[Parsing }

A

A
[Optimization

A o
s [Code Generation}
Y

e { Target CodeJ

Tour of Opti

e ocal optimizations

e Algebraic simplification

 Constant folding

e Strength reduction

e Constant propagation

* Copy propagation

e Dead-code elimination

e Common sub-expression elimination
e oop fusion, deforestation

e Additional optimizations
°Inlining

e Flattening/unboxings
*Uncurrying

Stephen Chong, Harvard University 6

Algebraic S

e Use algebraic arithmetic identities
°L.g.,
*e+0 becomes e

ec*] becomes e

ee*() becomes 0
®cfC.

Stephen Chong, Harvard University 7

Strength Red

*Replace “powerful”/expensive operations with
cheaper ones

°L.g.,
ex*2 becomes x+x

ex div 8 becomes x>>3

» On many machines bit shifting is faster than multiplication
and division

ex*15 becomes let t = x<<4 in t-x

Stephen Chong, Harvard University 8

Constant

¢ aka delta reductions

e Operations on constants can be done at compile
time!

°L.g.,
*3+4 becomes 7

eif true then s else t becomes s

Stephen Chong, Harvard University 9

Copy and Constant Propagation

*|f variable x is defined as a constant or another
variable, can replace x with its definition
*L.g., constant propagation
°let x = 3 in x + x becomes 3 + 3
elet foo = 4 in foo + bar becomes 4 + bar
*k.g., copy propagation

°let x = y in x + x becomes y + y

Dead Code

e Dead code = code that doesn’t contribute to the
program’s result

°L.g.,

°let x = e; in e; becomes e;
(if x doesn’t appear in ey)

Stephen Chong, Harvard University 11

Common Sub-Expression Elimination

e Don’t need to recompute the same thing multiple
times!

e |dentify and remove common subexpressions

°e.g., f(x+y,8+x+y) becomes
let t = x+y i1n f£(t, 8+t)

oT
oT

NN

AlS

Deforestation

< about the execution ofmap g (map f 1)

first map produces a new list that is consumed by

the second map

e memory allocation, pressure on the memory bandwidth,
garbage collection

*\What if we could do map (compose f g) 1 instead?

*In general, functional programming produces lots of
intermediate terms (trees)

e Deforestation is the removal of these intermediate trees

¢ aka fusion

Unboxing

e For uniformity, we often represent all data as pointers

e Allows functions like
map: ‘a list -> (‘a -> ‘b) -> ‘b list to work on all data
types, including ints, records, etc.

* Data represented by a pointer is called boxed

e Data represented directly in registers is unboxed
e Unboxing changes representation from pointer to value

*In Java this is the difference between, e.g., Integer and int
*\What is the benefit?

e More efficient access to data! Can store in register rather than memory
*When is it applicable? Not applicable?

*So long as value doesn’t escape (i.e., need to be passed in memory to other
function, caller, ...)

Unboxing E

function foo(x)
let v = (%, 1
let z = (y, 1
(bar y) + #2

 Function constructs 2 pairs, y and z

ey escapes (as argument to function bar)

* z does not escape

e Could unbox z to the following (enabling further optimizations)

function foo(x) =
let v = (x, 13) 1in
let z1 = y 1in
let z2 = 14 in
(bar y) + z2

Stephen Chong, Harvard University 15

Monomorphization

e Polymorphic code works for many types
°eE.g, map: ‘a list -> (‘a -> ‘b) -> ‘b list works for all types ‘a
and ‘b
e But code could be more efficient if it were specialized for a specific
type and then optimized
*When is it applicable?
*When we have polymorphic code

°E.g., C++ templates

*\What are the benefits?
*In presence of dynamic dispatch, may be able to turn some into static dispatch

* May enable optimizations like unboxing

e \What are the drawbacks?
¢ Potential for code bloat!

Local Optimizations

* Most of the optimizations we’ve just seen are
local optimizations

*They can be applied just looking locally at
computation

e No need to understand control flow

* Applying one local optimization may enable
more optimizations!

e Can just keep applying local optimizations until
we can’t apply any more...

Optimization Example

let *% 2 1in

a X
let b = 3 in Copy and let a = x ** 2 in
let ¢ = X in Conﬁant. let d = x * x in
let d = ¢ * ¢ in propagation let e = 3 * 2 in
let e = b * 2 in let £ = a + d in
let £ = a + d in e * f
e * 1 Constant
let a =|x folding
let d = x
let e = 6
let £ = a let a = x ** 2 id
e * £ let d = x * x in
| - let e 6 1n
Vubi”i,i'lifm let £ = a +d in
elimination e * f
let a = x * X 1n
let d a in Copy and , :
let e = 6 in constant propagation let a = x * X in
let £ = a + d in let £ =a + a in
e * £ 6 * £

When to Pertorm Local Optimization?

e Can be done at intermediate language
representation and at assembly level

e ocal optimizations at assembly level called
peephole optimizations

e Examine some small set of instructions and replace
with different set

e Often very machine specific

When is it Safe to Rewrite?

*\When can we safely replace el with e2?

1. when el == e2 from an input/output
point of view

* AND

*2. when el <e2 from our improvement
metrics (e.g., performance, space, power)

e “Optimization” is a misnomer; not producing optimal
program. Improving program...

[/O Equiv
e Consider let-reduction:
®* (let x = el in e2)=¢/= (e2[x~el])

where e2[x—~el] is e2 with el substituted for
X

*\When does this equation hold?

Stephen Chong, Harvard University 21

°let
°let
°let
°let
°let

“world”;

elet

T T T

X

X

Non-Examples

print "hello”;2 1n X+X

print
ralise
ref 3

print

foo ()

"hello" 1in 3
Foo 1in 3
in x = Ix + 1;

“hello” 1n print

in X + X

I X

For

°(let x = el in e2)=¢= (e2[x~el])

e Holds for sure when el has no observable
effects.

e Observable effects include:
ediverging
* iInput/output
eallocating or reading/writing refs & arrays
*raising an exception

Stephen Chong, Harvard University 23

Side-Effect Free by Construction

e Define a syntax for expressions that are guaranteed to be side-
effect free

*So we can guarantee that (let x = v in e) == (e[x~V])
when v is drawn from the subset of expressions:
vV 1= 1 (* constants *)
X (* variables *)
V Op V (* binops of vals *)
(Vi V) (* tuples of vals *)
#i v (* select of a val *)
D v (* constructors *)
fun x -> e (* functions *)
let x = v 1n v

*\What expressions are missing from here?

Anothe

e VVariable names!

e Consider the following program

let x = foo() 1in

let v = x+x 1in

let x = bar() in
Y * Y

elet’s replace y with x + x...

let x foo() in
let x bar() 1in
(X+x) * (X+X)

e Uh oh...

Stephen Chong, Harvard University 25

Variable Capture

*\When substituting a value v for a variable x, we
must make sure that none of the free variables in

v are accidentally captured.

* A simple solution is to just rename all the
variables so they are unique (throughout the
program) before doing any reductions.

* Must be sure to preserve uniqueness.

Avoiding C

e Returning to previous example

e Rename variables to be unique

let
let
let

* X KON

let
let
let

y

* N KX

foo() 1in
X+xX 1in
bar() in
foo() 1in
X+X 1n
bar() 1in

e Now replacing y with x + x avoids variable capture

Stephen Chong, Harvard University

let x
let vy
let 2z

foo() 1in
X+xX 1in
bar() 1in

(X+x) * (X+X)

27

Monadic Form

*We will put programs into mon

A syntactic form that lets us easily
effecting expressions from pure ex

eEnable simpler implementations o

adic form
distinguish side-
nressions

f optimizations

e Take CS152 to find out why it's ca
e Next lecture...

led monadic form!

