
CS153: Compilers
Lecture 15: Local Optimization

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Project 4 out
•Due Thursday Oct 25 (2 days)

•Project 5 out
•Due Tuesday Nov 13 (21 days)

•Project 6 will be released today
•Due Tuesday Nov 20 (28 days)

 2

Stephen Chong, Harvard University

Today

•Tour of many optimizations
•Algebraic simplification

•Constant folding
•Strength reduction

•Constant propagation
•Copy propagation

•Dead-code elimination
•Common sub-expression elimination

•Loop fusion, deforestation
•Flattening/unboxings

 3

Stephen Chong, Harvard University

Optimization

•Want to rewrite code so that it's:
•faster, smaller, consumes less power, etc.

•while retaining the "observable behavior"
• usually: input/output behavior

•often need analysis to determine that a given optimization
preserves behavior.

•often need profile information to determine that a given
optimization is actually an improvement.

•Often have two flavors of optimization:
•high-level: e.g., at the AST-level (e.g., inlining)

•low-level: e.g., right before instruction selection (e.g., register
allocation)

 4

Stephen Chong, Harvard University 5

Basic Architecture

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end

Stephen Chong, Harvard University

Tour of Optimizations

•Local optimizations
•Algebraic simplification
•Constant folding
•Strength reduction
•Constant propagation
•Copy propagation
•Dead-code elimination
•Common sub-expression elimination
•Loop fusion, deforestation

•Additional optimizations
•Inlining
•Flattening/unboxings
•Uncurrying
•...

 6

Stephen Chong, Harvard University

Algebraic Simplification

•Use algebraic arithmetic identities
•E.g.,

•e+0 becomes e

•e*1 becomes e

•e*0 becomes 0
•etc.

 7

Stephen Chong, Harvard University

Strength Reduction

•Replace “powerful”/expensive operations with
cheaper ones

•E.g.,
•x*2 becomes x+x

•x div 8 becomes x>>3
•On many machines bit shifting is faster than multiplication
and division

•x*15 becomes let t = x<<4 in t-x

 8

Stephen Chong, Harvard University

Constant Folding

•aka delta reductions
•Operations on constants can be done at compile

time!
•E.g.,

•3+4 becomes 7
•if true then s else t becomes s

 9

Stephen Chong, Harvard University

Copy and Constant Propagation

•If variable x is defined as a constant or another
variable, can replace x with its definition

•E.g., constant propagation
•let x = 3 in x + x becomes 3 + 3

•let foo = 4 in foo + bar becomes 4 + bar

•E.g., copy propagation
•let x = y in x + x becomes y + y

 10

Stephen Chong, Harvard University

Dead Code Elimination

•Dead code = code that doesn’t contribute to the
program’s result

•E.g.,
•let x = e1 in e2 becomes e2  

 (if x doesn’t appear in e2)

 11

Stephen Chong, Harvard University

Common Sub-Expression Elimination

•Don’t need to recompute the same thing multiple
times!

•Identify and remove common subexpressions
•e.g., f(x+y,8+x+y) becomes  

 let t = x+y in f(t, 8+t)

 12

Stephen Chong, Harvard University

Deforestation

•Think about the execution of map g (map f l)
•The first map produces a new list that is consumed by

the second map
•memory allocation, pressure on the memory bandwidth,

garbage collection

•What if we could do map (compose f g) l instead?
•In general, functional programming produces lots of

intermediate terms (trees)
•Deforestation is the removal of these intermediate trees

•aka fusion

 13

Stephen Chong, Harvard University

Unboxing

•For uniformity, we often represent all data as pointers
•Allows functions like  
map: ‘a list -> (‘a -> ‘b) -> ‘b list to work on all data
types, including ints, records, etc.

•Data represented by a pointer is called boxed

•Data represented directly in registers is unboxed

•Unboxing changes representation from pointer to value
•In Java this is the difference between, e.g., Integer and int

•What is the benefit?
•More efficient access to data! Can store in register rather than memory

•When is it applicable? Not applicable?
•So long as value doesn’t escape (i.e., need to be passed in memory to other

function, caller, ...)
 14

Stephen Chong, Harvard University

Unboxing Example

•Function constructs 2 pairs, y and z

•y escapes (as argument to function bar)

•z does not escape

•Could unbox z to the following (enabling further optimizations)

 15

function foo(x) =
 let y = (x, 13) in
 let z = (y, 14) in
 (bar y) + #2 z

function foo(x) =
 let y = (x, 13) in
 let z1 = y in
 let z2 = 14 in
 (bar y) + z2

Stephen Chong, Harvard University

Monomorphization

•Polymorphic code works for many types
•E.g., map: ‘a list -> (‘a -> ‘b) -> ‘b list works for all types ‘a

and ‘b

•But code could be more efficient if it were specialized for a specific
type and then optimized

•When is it applicable?
•When we have polymorphic code
•E.g., C++ templates

•What are the benefits?
•In presence of dynamic dispatch, may be able to turn some into static dispatch
•May enable optimizations like unboxing

•What are the drawbacks?
•Potential for code bloat!

 16

Stephen Chong, Harvard University

Local Optimizations

•Most of the optimizations we’ve just seen are
local optimizations
•They can be applied just looking locally at

computation
•No need to understand control flow

•Applying one local optimization may enable
more optimizations!

•Can just keep applying local optimizations until
we can’t apply any more...

 17

Stephen Chong, Harvard University

Optimization Example

 18

let a = x ** 2 in
let b = 3 in
let c = x in
let d = c * c in
let e = b * 2 in
let f = a + d in
e * f

let a = x ** 2 in
let d = x * x in
let e = 3 * 2 in
let f = a + d in
e * f

Copy and  
constant  
propagation

let a = x ** 2 in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = a in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let f = a + a in
6 * f

Constant 
 folding

Strength reduction

 Common
 sub-expression
elimination

Copy and  
constant propagation

Stephen Chong, Harvard University

When to Perform Local Optimization?

•Can be done at intermediate language
representation and at assembly level

•Local optimizations at assembly level called
peephole optimizations
•Examine some small set of instructions and replace

with different set
•Often very machine specific

 19

Stephen Chong, Harvard University

When is it Safe to Rewrite?

•When can we safely replace e1 with e2?
•1. when e1 == e2 from an input/output  
 point of view

•AND
•2. when e1 ≤ e2 from our improvement  
 metrics (e.g., performance, space, power)
•“Optimization” is a misnomer; not producing optimal

program. Improving program...

 20

Stephen Chong, Harvard University

I/O Equivalence

•Consider let-reduction:

• (let x = e1 in e2) =?= (e2[x↦e1]) 
 where e2[x↦e1] is e2 with e1 substituted for
x

•When does this equation hold?

 21

Stephen Chong, Harvard University

Non-Examples

•let x = print "hello“;2 in x+x
•let x = print "hello" in 3
•let x = raise Foo in 3
•let x = ref 3 in x := !x + 1; !x
•let x = print “hello” in print
“world”;

•let x = foo() in x + x

 22

Stephen Chong, Harvard University

For ML

•(let x = e1 in e2) =?= (e2[x↦e1])
•Holds for sure when e1 has no observable

effects.

•Observable effects include:
•diverging
•input/output
•allocating or reading/writing refs & arrays
•raising an exception

 23

Stephen Chong, Harvard University

Side-Effect Free by Construction

•Define a syntax for expressions that are guaranteed to be side-
effect free

•So we can guarantee that (let x = v in e) == (e[x↦v])
when v is drawn from the subset of expressions:

•What expressions are missing from here?
 24

v ::= i (* constants *)
 | x (* variables *)
 | v op v (* binops of vals *)
 | (v,…,v) (* tuples of vals *)
 | #i v (* select of a val *)
 | D v (* constructors *)
 | fun x -> e (* functions *)
 | let x = v in v

Stephen Chong, Harvard University

Another Problem

•Variable names!
•Consider the following program

•Let’s replace y with x + x...

•Uh oh...
 25

let x = foo() in
let y = x+x in
let x = bar() in
 y * y

let x = foo() in
let x = bar() in
(x+x) * (x+x)

Stephen Chong, Harvard University

Variable Capture

•When substituting a value v for a variable x, we
must make sure that none of the free variables in
v are accidentally captured.

•A simple solution is to just rename all the
variables so they are unique (throughout the
program) before doing any reductions.

•Must be sure to preserve uniqueness.

 26

Stephen Chong, Harvard University

Avoiding Caputre

•Returning to previous example

•Rename variables to be unique

•Now replacing y with x + x avoids variable capture

 27

let x = foo() in
let y = x+x in
let x = bar() in
 y * y

let x = foo() in
let y = x+x in
let z = bar() in
 y * y

let x = foo() in
let y = x+x in
let z = bar() in
 (x+x) * (x+x)

Stephen Chong, Harvard University

Monadic Form

•We will put programs into monadic form
•A syntactic form that lets us easily distinguish side-

effecting expressions from pure expressions
•Enable simpler implementations of optimizations
•Take CS152 to find out why it’s called monadic form!

•Next lecture...

 28

