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Announcements

•Project 4 out 
•Due Thursday Oct 25 (2 days) 

•Project 5 out 
•Due Tuesday Nov 13 (21 days) 

•Project 6 will be released today 
•Due Tuesday Nov 20 (28 days)
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Today

•Tour of many optimizations 
•Algebraic simplification 

•Constant folding 
•Strength reduction 

•Constant propagation 
•Copy propagation 

•Dead-code elimination 
•Common sub-expression elimination  

•Loop fusion, deforestation 
•Flattening/unboxings
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Optimization

•Want to rewrite code so that it's: 
•faster, smaller, consumes less power, etc. 

•while retaining the "observable behavior" 
• usually:  input/output behavior 

•often need analysis to determine that a given optimization 
preserves behavior.   

•often need profile information to determine that a given 
optimization is actually an improvement. 

•Often have two flavors of optimization: 
•high-level:  e.g., at the AST-level (e.g., inlining) 

•low-level:  e.g., right before instruction selection (e.g., register 
allocation)
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Tour of Optimizations

•Local optimizations 
•Algebraic simplification 
•Constant folding 
•Strength reduction 
•Constant propagation 
•Copy propagation 
•Dead-code elimination 
•Common sub-expression elimination  
•Loop fusion, deforestation 

•Additional optimizations 
•Inlining 
•Flattening/unboxings 
•Uncurrying 
•...
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Algebraic Simplification

•Use algebraic arithmetic identities 
•E.g., 

•e+0 becomes e 

•e*1 becomes e 

•e*0 becomes 0 
•etc.
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Strength Reduction

•Replace “powerful”/expensive operations with 
cheaper ones 

•E.g., 
•x*2 becomes x+x

•x div 8 becomes x>>3
•On many machines bit shifting is faster than multiplication 
and division

•x*15 becomes let t = x<<4 in t-x
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Constant Folding

•aka delta reductions 
•Operations on constants can be done at compile 

time! 
•E.g., 

•3+4  becomes  7 
•if true then s else t   becomes    s
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Copy and Constant Propagation

•If variable x is defined as a constant or another 
variable, can replace x with its definition 

•E.g., constant propagation 
•let x = 3 in x + x  becomes  3 + 3

•let foo = 4 in foo + bar becomes  4 + bar 

•E.g., copy propagation 
•let x = y in x + x  becomes  y + y
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Dead Code Elimination

•Dead code = code that doesn’t contribute to the 
program’s result 

•E.g., 
•let x = e1 in e2 becomes e2  

                             (if x doesn’t appear in e2)
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Common Sub-Expression Elimination

•Don’t need to recompute the same thing multiple 
times! 

•Identify and remove common subexpressions 
•e.g., f(x+y,8+x+y) becomes  

                let t = x+y in f(t, 8+t)
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Deforestation

•Think about the execution of map g (map f l) 
•The first map produces a new list that is consumed by 

the second map 
•memory allocation, pressure on the memory bandwidth, 

garbage collection 

•What if we could do map (compose f g) l instead? 
•In general, functional programming produces lots of 

intermediate terms (trees) 
•Deforestation is the removal of these intermediate trees 

•aka fusion
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Unboxing

•For uniformity, we often represent all data as pointers 
•Allows functions like  
map: ‘a list -> (‘a -> ‘b) -> ‘b list to work on all data 
types, including ints, records, etc. 

•Data represented by a pointer is called boxed 

•Data represented directly in registers is unboxed 

•Unboxing changes representation from pointer to value 
•In Java this is the difference between, e.g., Integer and int 

•What is the benefit? 
•More efficient access to data! Can store in register rather than memory 

•When is it applicable? Not applicable? 
•So long as value doesn’t escape (i.e., need to be passed in memory to other 

function, caller, ...)
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Unboxing Example

•Function constructs 2 pairs, y and z 

•y escapes (as argument to function bar) 

•z does not escape 

•Could unbox z to the following (enabling further optimizations)
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function foo(x) =
  let y = (x, 13) in
  let z = (y, 14) in
  (bar y) + #2 z

function foo(x) =
  let y = (x, 13) in
  let z1 = y in
  let z2 = 14 in
  (bar y) + z2
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Monomorphization

•Polymorphic code works for many types 
•E.g., map: ‘a list -> (‘a -> ‘b) -> ‘b list works for all types ‘a 

and ‘b

•But code could be more efficient if it were specialized for a specific 
type and then optimized 

•When is it applicable? 
•When we have polymorphic code 
•E.g., C++ templates 

•What are the benefits? 
•In presence of dynamic dispatch, may be able to turn some into static dispatch 
•May enable optimizations like unboxing 

•What are the drawbacks? 
•Potential for code bloat!
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Local Optimizations

•Most of the optimizations we’ve just seen are 
local optimizations 
•They can be applied just looking locally at 

computation 
•No need to understand control flow 

•Applying one local optimization may enable 
more optimizations! 

•Can just keep applying local optimizations until 
we can’t apply any more...
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Optimization Example
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let a = x ** 2 in
let b = 3 in
let c = x in
let d = c * c in
let e = b * 2 in
let f = a + d in
e * f

let a = x ** 2 in
let d = x * x in
let e = 3 * 2 in
let f = a + d in
e * f

Copy and  
constant  
propagation

let a = x ** 2 in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = x * x in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let d = a in
let e = 6 in
let f = a + d in
e * f

let a = x * x in
let f = a + a in
6 * f

Constant 
   folding

Strength reduction

       Common  
    sub-expression  
elimination

Copy and  
constant propagation
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When to Perform Local Optimization?

•Can be done at intermediate language 
representation and at assembly level 

•Local optimizations at assembly level called 
peephole optimizations 
•Examine some small set of instructions and replace 

with different set 
•Often very machine specific
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When is it Safe to Rewrite?

•When can we safely replace e1 with e2? 
•1.  when e1 == e2 from an input/output  
  point of view 

•AND 
•2. when  e1 ≤ e2 from our improvement  
 metrics (e.g., performance, space, power) 
•“Optimization” is a misnomer; not producing optimal 

program. Improving program...
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I/O Equivalence

•Consider let-reduction: 

• (let x = e1 in e2) =?=  (e2[x↦e1]) 
 where e2[x↦e1] is e2 with e1 substituted for 
x 

•When does this equation hold?
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Non-Examples

•let x = print "hello“;2 in x+x
•let x = print "hello" in 3 
•let x = raise Foo in 3 
•let x = ref 3 in x := !x + 1; !x
•let x = print “hello” in print 
“world”;

•let x = foo() in x + x
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For ML

•(let x = e1 in e2) =?=  (e2[x↦e1]) 
•Holds for sure when e1 has no observable 

effects. 

•Observable effects include: 
•diverging 
•input/output 
•allocating or reading/writing refs & arrays 
•raising an exception
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Side-Effect Free by Construction 

•Define a syntax for expressions that are guaranteed to be side-
effect free 

•So we can guarantee that (let x = v in e)  ==  (e[x↦v]) 
when v is drawn from the subset of expressions: 

•What expressions are missing from here?
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v ::= i          (* constants *)
    | x          (* variables *)
    | v op v     (* binops of vals *)
    | (v,…,v)    (* tuples of vals *)
    | #i v       (* select of a val *)
    | D v        (* constructors *)
    | fun x -> e (* functions *)
    | let x = v in v
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Another Problem

•Variable names! 
•Consider the following program 

•Let’s replace y with x + x... 

•Uh oh...
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let x = foo() in
let y = x+x in 
let x = bar() in
  y * y

let x = foo() in
let x = bar() in
(x+x) * (x+x)
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Variable Capture

•When substituting a value v for a variable x, we 
must make sure that none of the free variables in 
v are accidentally captured. 

•A simple solution is to just rename all the 
variables so they are unique (throughout the 
program) before doing any reductions. 

•Must be sure to preserve uniqueness.
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Avoiding Caputre

•Returning to previous example 

•Rename variables to be unique 

•Now replacing y with x + x avoids variable capture

 27

let x = foo() in
let y = x+x in 
let x = bar() in
  y * y             

let x = foo() in
let y = x+x in 
let z = bar() in
  y * y             

let x = foo() in
let y = x+x in 
let z = bar() in
  (x+x) * (x+x)
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Monadic Form

•We will put programs into monadic form 
•A syntactic form that lets us easily distinguish side-

effecting expressions from pure expressions 
•Enable simpler implementations of optimizations 
•Take CS152 to find out why it’s called monadic form! 

•Next lecture...
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