
CS153: Compilers
Lecture 24:
Compiling Control Flow

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Pre-class Puzzle

•Consider Python generators, as shown in this program,  
which outputs the numbers 1 through 10

•How would you compile generators?

 2

def my_gener(x):
 yield x
 yield x+1
 for y in range(2, 10):
 yield x+y

for value in my_gener(1):
 print(value)

Stephen Chong, Harvard University

Announcements

•Project 7 out
•Due Thursday Nov 29 (2 days)

•Project 8 out
•Due Saturday Dec 8 (11 days)

•Final exam: Wed December 12, 9am-12pm,  
Emerson 305

•Covers everything except guest lectures
‣ Lec 1-21, 23, 24, and all projects are fair game!

• 30 multiple choice questions

•Open book, open note, open laptop

•No internet (except to look up notes, etc.),
‣No looking up answers, no communicating with anyone

 3

Stephen Chong, Harvard University

Today

•Compiling control flow
•Break and continue
•Exceptions
• “Zero cost” exceptions

•Generators

 4

Stephen Chong, Harvard University

Control Flow

•So far we have seen standard control flow
constructs
•Sequence, selection, iteration

•But modern languages have additional control
flow constructs! How do we deal with them?

 5

Stephen Chong, Harvard University

Break and Continue

•Many languages have a statement to exit a loop
early
•Typically break

•Also have statement to continue with next iteration
•Typically continue

•Straightforward to construct CFG
•continue statements become jumps to loop header

•break statements become jumps to statement after loop

 6

Stephen Chong, Harvard University

Example

 7

i := 0;
while (i < 100) {
 x := foo(i);
 if (!x) {
 continue;
 }
 y := bar(i);
 if (y > 100) {
 break;
 }
 i := i+1;
}
z := 0

i := 0

if i < 100

x := foo(i)
if !x

y := bar(i)
if y > 100

i := i + 1

z := 0

Stephen Chong, Harvard University

Labeled Loops

•Typically break and continue are with respect to the closest loop
(while, for, do-while, etc.)

•C, C++, Java, etc., allow labeled loops
•e.g., L: while (e) {  
 while (e’) {  
 ...  
 break L;  
 ...  
 }  
 }

•To compile, maintain stack of loops as processing statements
•For each loop, record label of loop, break target and continue target

•When break or continue is encountered, use the loop info at top of stack

•When break L or continue L is encountered, use the loop info for the
labeled loop

 8

Stephen Chong, Harvard University

Exceptions

•Many languages support exceptions and exception handling

•A mechanism to indicate and handle errors or unusual conditions

•Typically a construct to raise or throw a value, and a construct to indicate
how to handle exceptions

•In Java, try {...} catch (Exception e) {...}

•In OCaml, try ... with ...

•E.g.

•How to compile exceptions and handlers?

 9

try {
 if (n <= 0) throw “too small”;
 if (n > 100) throw “too large”;
 ...
}
catch x {
 print “Error: “ + x;
}

Stephen Chong, Harvard University

Handling Exceptions Within A Procedure

•Straightforward! Just affects CFG...

 10

try {
 if (n <= 0) throw “too small”;
 if (n > 100) throw “too large”;
 ...
}
catch x {
 print “Error: “ + x;
}
z := ...

if n <= 0

x := “too small” if n > 100

print “Error: “ + x

z := ...

...

x := “too large”

Stephen Chong, Harvard University

Handling Exceptions Across Calls?

•Function bar might return normally or with an
exception! How do we handle this?

 11

void foo() {
 try {
 x := bar();
 ...
 }
 catch y {
 x := 0;
 }
 ...
}

void bar() {
 ...
 if (...) {
 throw “Uh oh!”;
 }
 ...
}

Stephen Chong, Harvard University

Handler Adresses

•Callee could return normally or exceptionally
•Key idea: provide two return addresses!

•One for returning normally
•One for returning exceptionally

•Note: This is a change in calling convention

 12

Stephen Chong, Harvard University

Example

 13

(arguments, locals, etc.)

foo’s normal return address

foo’s exceptional return address

(arguments, locals for bar)

Frame for  
foo()

Frame for  
bar()

foo’s frame pointer

void foo() {
 try {
 x := bar();
 ...
 }
 catch y {
 x := 0;
 }
 ...
}

void bar() {
 ...
 if (...) {
 throw “Uh oh!”;
 }
 ...
}

Stephen Chong, Harvard University

Exception Mechanism Expensive

•Exceptions are exceptional
•i.e., typically occur rarely

•But for every function call we need to push an
exceptional return address on the stack
•Expensive!

•Can we reduce the cost in the normal case?
•i.e., when no exception is thrown?

 14

Stephen Chong, Harvard University

“Zero Cost” Exceptions

•Key insight: for a given normal return address, the
handler address is always the same!

 15

void foo() {
 try {
 x := bar();
 ...
 foo();
 }
 catch y {
 x := 0;
 }
 try { baz(); }
 catch y { ... }
 ...
}

For these call sites,
the catch handler is always
this one

For this call site,
the catch handler is always

this one

Stephen Chong, Harvard University

“Zero Cost” Exceptions

•Key insight: for a given normal return address, the
handler address is always the same!

•So don’t bother putting handler address on stack
•Instead, create table that maps ranges of normal

return addresses to handler addresses
•No overhead during normal execution

•So-called “zero cost”

•When a function needs to return exceptionally, use
normal return address to look up in table and find
corresponding handler address

 16

Stephen Chong, Harvard University

Extensions

•Finally blocks
•try { ... } finally { ... }
•Finally block will always execute when try block exits

(whether normally or exceptionally)
•Useful to allow clean up of resources (also, e.g., restoring of

callee-save registers, regardless of how function returns)

•Typically construct CFG by copying the finally block

•Different kinds of exceptions
•Languages allow catch handlers to catch only certain kinds of

exceptions

•Some languages allow handlers to tell program to resume
execution at point where exception was thrown

 17

Stephen Chong, Harvard University

Generators

•Iterators allow sequentially processing of values in a
collection
•From CLU programming language, Barbara Liskov et al., 1974
•E.g., in Java: 

 Iterator iter = list.iterator();  
 while (iter.hasNext()) {  
 Object n = iter.next(); ...  
 }

•Generators are one way of writing iterators
•Can yield multiple values to caller (as opposed to normal

functions, which just return once)
•Generator maintains its state between invocations
•In languages such as Python, Javascript, C#

 18

Stephen Chong, Harvard University

Generator Examples

•Traversing a binary tree

•Note, in Python, it’s a 
little different.  
Can only yield from  
generator function

 19

gen() {
 if (this.left) { this.left.gen(); }
 yield this.val;
 if (this.right) { this.right.gen(); }
}

class Node:
 left = None
 right = None
 val = None
 def gen(self):
 if self.left:
 for x in self.left.gen():
 yield x
 yield self.val
 if self.right:
 for x in self.right.gen():
 yield x

Stephen Chong, Harvard University

Generator Examples

•Fibonacci

 20

def fibonacci():
 a, b = 0, 1
 while True:
 yield a
 a, b = b, a+b

Stephen Chong, Harvard University

How to Compile Generators?

•Need to maintain local state of generator between yields of values

•Key idea: have a separate call stack for generator
•Stack frames for generators are not reclaimed when generator yields a

value

•Represent a generator as a call stack, resume address,
•When consumer invokes generator for next value:

•Like a normal function call, but set up frame pointer and stack pointer for
the generator’s call stack, and jump to generator’s resume address. Needs
to save off frame pointer, stack pointer, and yield address

•When generator yields a value:
•Restore frame pointer and stack pointer appropriately for consumer
•Save resume address
•Jump to the yield address, passing yielded value

 21

resume addr.

fp

sp

p5

Stack Generator stateConsumer state

Stephen Chong, Harvard University

Example

 22

def gen(i):
 yield 40+i
 yield 41+i
 yield 42+i

g = gen(2)
print next(g)
print next(g)
print next(g)

(arguments, locals, etc.)
yield address

fp

sp

argument i
(locals, etc.)

p4:
p5:
p6:

p4

p1:
p2:
p3:

p12 p2yield address resume addr.

Stephen Chong, Harvard University

Notes

•Generators are an example of co-routines
•Co-routines can exit by invoking other code, and then

later return to same program point

•Continuations are a useful way to think about
and compile control flow constructs
•See CS152!

 23

