HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 2: Assembly

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Contains content from lecture notes by Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Announcements

* Name tags
* Device free seating

eRight side of classroom (as facing front): no devices
e Allow you to commit to being device-free/avoid devices

e College students registering for course: all good?
e Access to Gradescope: all students should have

e Contact Prof Chong if you don't

e Homework 0 (Google form): please complete this week!
* https://forms.gle/P65LytlYbKA5MzB|9

e Homework 1 (HellOCaml) out
e Due Tuesday Sept 10

https://forms.gle/P65LytJYbKA5MzBj9

* Turning C into machine code
*|ntel x86
*x86lite

Stephen Chong, Harvard University 3

Turning C into Machine

C program
(myprog.c)

Assembly program
(myprog.s)

Machine code
(myprog.o)

4)
int dosum(int 1, int j) {
return 1+j;
3
_ . J
(dosum: h
pushl %ebp
mov1l %esp, %ebp
mov L 12(%ebp), %eax
addl 8(%ebp), %eax
popl %ebp
\ ret)

A

<Assembler (geD

v

Skipping assembly lang

e Most C compilers generate machine code (object files) directly.
eThat is, without actually generating the human-readable assembly file.

e Assembly language is mostly useful to people, not machines.

4) 4)

myprog.c myprog.s e

- J - J

gcc -C -

*Can generate assembly from C using “gcc -S”

* And then compile to an object file by hand using “gas”

Object files and executa

*C source file (myprog.c) is compiled into an object file (myprog. o)

e Object file contains the machine code for that C file.

e[t may contain references to external variables and routines

eE.g., if myprog.c calls printf (), then myprog.o will contain a reference to
printf ()

e Multiple object files are linked to produce an executable file.

e Typically, standard libraries (e.g., “libc”) are included in the linking process.

e Libraries are just collections of pre-compiled object files, nothing more!

(somelib.c @

Characteristics of assembly language

e Assembly language is very, very simple.

eSimple, minimal data types
eInteger data of 1, 2, 4, or 8 bytes
*Floating point data of 4, 8, or 10 bytes

*No aggregate types such as arrays or structures!

* Primitive operations
e Perform arithmetic operation on registers or memory (add, subtract, etc.)
eRead data from memory into a register
e Store data from register into memory
e Transfer control of program (jump to new address)
e Test a control flag, conditional jump (e.g., jump only if zero flag set)

* More complex operations must be built up as (possibly long)
sequences of instructions.

Assembly vs Machine Code

*\We write assembly language instructions
°c.g., “addqg %rbx, %rax”

e The machine interprets machine code bits
*e.g.,“101011001100111..."

* The assembler takes care of compiling assembly
language to bits for us.

e|t also provides a few conveniences

Intel’s X86 A

®1978: Intel introduces 8086
©¢1982: 80186, 80286

©1985: 80386

©1989: 80486 (100MHz, Tum)
®1993: Pentium

¢ 1995: Pentium Pro

®1997: Pentium Il/111

¢2000: Pentium 4

©2003: Pentium M, Intel Core
®2006: Intel Core 2

©2008: Intel Core i3/i5/i7 | =
*2011: SandyBridge / IvyBridge 5 _«'-
*2013: Haswell

*2014: Broadwell

«2015: Skylake (4.2GHz, 14nm) |nt9|) L'

* AMD has a parallel line of processors AMD

Stephen Chong, Harvard University 9

; gYV A
‘a‘%\ﬁ‘;ﬁ‘.‘q"'?v?" A 1) ==

AERIIEEERRER

*X86 assembly is very complicated:

X86 vs. X86lite

*8-, 16-, 32-, 64-bit values + floating points, etc.

eIntel 64 and IA 32 architectures have a huge number of functions

e “CISC” complex instructions

e Machine code: instructions range in size from 1 byte to 17 bytes

_ots of hold-over design decisions for backwards compatibility
Hard to understand, there is a large book about optimizations at

iust the instruction-selection level

e X86lite is a very simple subset of X86:

*Only 64 bit signed integers (no floating point, no 16bit, no ...)

*Only about 20 instructions

o Sufficient as a target language for general-purpose computing

RIP

Processor
/
I
|
I
|
|
I
|
|
I
: Instruction
I Decoder
|
|
I
|
|
I
|
|
I
|
|
: Control
|
I
|
I rax rbx rcx rdx
I
I rsi rdi rbp rsp
|
| r08 r09 rl0 rlil
: ril2 rl3 rl4 rlb
I
I .
: Registers

\

EENE BN BN BN B BEEE BEEE BEEE BEEE NN BN B G RSN BN IS G B B B B G B B B B B B S S S S S S e e e . e

e e e o o o o e e e o e o

Heap

0x00000000

Larger Addresses

v

Oxffffffff

11

X86lite Machine State: Registers

eRegister File: 16 64-bit registers

°*rax general purpose accumulator

°rbx base register, pointer to data

°*rcx counter register for strings & loops

°rdx data register for 1/0

°rsi pointer register, string source register
erdi nointer register, string destination register
°rbp base pointer, points to the stack frame
°rsp stack pointer, points to the top of the stack

er08-r1l5 general purpose registers

I//

°rip a “virtual” register, points to the current instruction

erip is manipulated only indirectly via jumps and return.

Simplest instruction: mov

emovqg SRC, DEST copy SRC into DEST

e Here, DEST and SRC are operands
e DEST is treated as a location

* A location can be a register or a memory address

e SRC is treated as a value
* A value is the contents of a register or memory address
e A value can also be an immediate (constant) or a label

movqg S$4, %rax // move the 64-bitimmediate value 4 into rax

emovqg 3rbxX, %rax // move the contents of rbx into rax

A Note About Instruction Syntax

* X86 presented in two common syntax formats ot
Src es
e AT&T notation: source before destination

i - mov 5, %rax
*Prevalent in the Unix/Mac ecosystems q $5,

*Immediate values prefixed with ‘$’ movl $5, %eax

*Registers prefixed with ‘8’

e Mnemonic suffixes: movqg vs. mov
* g = quadword (4 words)
1 = long (2 words)
*w = word

*b =byte dest src

e ntel notation: destination before source
. o mov rax, 5
e Used in the Intel specification / manuals

*Prevalent in the Windows ecosystem mov eax, 5

e|nstruction variant determined by register name

e Note: X86Lite uses AT&T notation and the 64-bit only version of the instructions
and registers

Detour: 2’s complement

e Representing non-negative integers in bits is
straightforward

e How do we represent negative integers in bits?

* Three common encodings:
eSign and magnitude
*Ones’ complement
* Two’s complement

Two’s complement

elf integer k is represented by bits b;...b,, then -k is
represented by 100. . .00 - b;...b, (where |100..00 | =n+1)

e Equivalent to taking ones’ complement and adding 1

°E.g., using 4 bits:
*6=0110
-6 =10000-0110 = 1010 = (1111-0110)+1

e Using n bits, can represent numbers 27 values

°E.g., using 4 bits, can represent integers
-8,-7,...,-1,0,1,...,6,7

e|ike sign and magnitude and ones’ complement, first bit
indicates whether number is negative

Properties of

e Same implementation
unsigned

two’s complement

of arithmetic operations as for

eE.g., addition, using 4 bits
*unsigned: 0001 + 1001 =1 + 9 =10 = 1010
*two’s complement: 0001 + 1001 =1 +-7 = -6 = 1010

* Only one representation of zero!

eSimpler to implement o

e Not symmetric arounc

nherations

/€ero

e Can represent more negative numbers than positive numbers

* Most common representation of negative integers

Integer overflow

e Overflow can also occur with negative integers
e \With 32 bits, maximum integer expressible in 2’s

complement is 231-1 = Ox7fffffff
Ox/fffffff + Ox1 = Ox380000000 = -231

* Minimum integer expressible in 32-bit 2’s complement

*Ox80000000 + ¥x80VAVAVA = OxO

Stephen Chong, Harvar

d Univ

ersity

Integer overtlo

Overflow

\

UAdd,(

e

u,v

,,,,,llll/l{{llil

19

Integer overflow

§? 6

#?

//////,

888888888

PosOver

NegOver

X86lite Arithmetic instructions

*negq DEST two’s complement negation
*addg SRC, DEST DEST « DEST + SRC
*subg SRC, DEST DEST « DEST — SRC
°*imulqg SRC, Reg Reg < Reg * SRC

(truncated 128-bit mult.)
e Examples:

eaddg %rbx, %rax //rax « rax + rbx
esubg $4, rsp //rsp < rsp -4
* Note: Reg (in imulg) must be a register, not a memory address

X86lite Logic/ Bit manipulation

Operations
enotqg DEST logical negation
°*andg SRC, DEST DEST « DEST && SRC
eorqgq SRC, DEST DEST + DEST || SRC
exorqg SRC, DEST DEST « DEST xor SRC
esarg Amt, DEST DEST < DEST >> amt (arithmetic shift right)
eshlg Amt, DEST DEST « DEST << amt (arithmetic shift left)
eshrg Amt, DEST DEST « DEST >>> amt (bitwise shift right)

X86 Oper

e Operands are the values operated on by the assembly instructions

°Imm 64-bit literal signed integer “immediate”

| bl a “label” representing a machine address
the assembler/linker/loader resolve labels

*Reg One of the 16 registers, the value of a register is
Its contents

°Ind [base:Reg][index:Reg,scale:int32][disp]

machine address (see next slide)

Stephen Chong, Harvard University

23

X86 Addressing

*In general, there are three components of an indirect address
eBase: a machine address stored in a register
eIndex * scale: a variable offset from the base
e Disp: a constant offset (displacement) from the base

eaddr(ind) = Base + [Index * scale] + Disp

*When used as a location, ind denotes the address addr(ind)

*When used as a value, ind denotes Mem[addr(ind)], the contents
of the memory address

eExample: -4 (%rsp) denotes address: rsp — 4
eExample: (%rax, %rcx, 4) denotes address: rax + 4*rcx
eExample: 12 (%rax, %rcx, 4) denotes address: rax + 4*rcx +12

e Note: Index cannot be rsp
*Note: X86Lite does not needs this full generality. It does not use index * scale

X86lite Memory Model

e The X86lite memory consists of 264 bytes numbered 0x00000000
through Oxffffffff.

 X86lite treats the memory as consisting of 64-bit (8-byte) quadwords.

e Therefore: legal X86lite memory addresses consist of 64-bit,
quadword-aligned pointers.

e All memory addresses are evenly divisible by 8

eleaqg Ind, DEST DEST + addr(Ind) loads a pointer into DEST

* By convention, there is a stack that grows from high addresses to low
addresses
e The register rsp points to the top of the stack
epushqg SRC rsp + rsp - 8 Memlrsp] « SRC
*popq DEST DEST <« Mem|rsp]; rsp « rsp + 8

X386lite State: Condition Flags &
Codes

* X86 instructions set flags as a side effect
e X86lite has only 3 flags:

*OF: “overflow” set when the result is too big/small to fit in 64-bit reg.
* SF: “sign” set to the sign or the result (O=positive, 1 = negative)

e 7F: “zero” set when the result is O

*From these flags, we can define Condition Codes
e To compare SRC1 and SRC2, compute SRCT — SRC2 to set the flags
ee equality nolds when ZF is set
ene inequality nolds when (not ZF)

eg greater than holds when (not zF) and (not SF)

o]l less than nolds when SF <> OF
* Equivalently: ((SF && not OF) || (not SF && OF))

ege greater or equal holds when (not SF)
ele than or equal holds when SF <> OF or ZF

Code Blocks

* X86 assembly code is organized into labeled blocks:

labell:
<instruction>
<instruction>

<instruction>

label2:
<instruction>
<instruction>

<instruction>

e Labels indicate code locations that can be jump targets (either through conditional branch
instructions or function calls).

e Labels are translated away by the linker and loader — instructions live in the heap in the
“code segment”

* An X86 program begins executing at a designated code label (usually “main”)

Stephen Chong, Harvard University 27

Conditional I

ecmpqg SRCT1, SRC2 Compute SRC2 — SRCT, set condition flags
*setbCC DEST DEST’s lower byte « if CC then 1 else O
* 5CC SRC rip + if CC then SRC else fallthrough
e Example:
cmpg %rcx, %rax // Compare rax to ecx

je _ truelbl // If rax = rcx then jumpto truelbl

Stephen Chong, Harvard University 28

Jumps, Call and Return

e jmp SRC rip « SRC Jump to location in SRC

ecallqg SRC Push rip; rip « SRC

e Call a procedure: Push the program counter to the stack
(decrementing rsp) and then jump to the machine instruction at
the address given by SRC.

°retq Pop Into rip
eReturn from a procedure: Pop the current top of the stack into rip
(iIncrementing rsp).

e This instruction effectively jumps to the address at the top of the
stack

Imple

*See file x86 .ml

Stephen Chong, Harvard University 30

Compiling, Linking, Running

e To use hand-coded X86:

*]1.Compile main.ml (or something like it) to either native or
bytecode

2 .Run it, redirecting the output to some .s file, e.g.:
*./main >> test.s

*3.Use gcc to compile & link with runtime.c:
*gcc -0 test runtime.c test.s

*4.You should be able to run the resulting executable:
*./test

*|f you want to debug in gdb:

Call gcc with the —g flag too

