
CS153: Compilers
Lecture 2: Assembly

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Announcements

•Name tags
•Device free seating

•Right side of classroom (as facing front): no devices
•Allow you to commit to being device-free/avoid devices

•College students registering for course: all good?
•Access to Gradescope: all students should have

•Contact Prof Chong if you don’t

•Homework 0 (Google form): please complete this week!
•https://forms.gle/P65LytJYbKA5MzBj9

•Homework 1 (HellOCaml) out
•Due Tuesday Sept 10

 2

https://forms.gle/P65LytJYbKA5MzBj9

Stephen Chong, Harvard University

Today

•Turning C into machine code
•Intel x86
•x86lite

 3

Stephen Chong, Harvard University

Turning C into Machine Code

 4

int dosum(int i, int j) {
return i+j;

}

dosum:
 pushl %ebp
 movl %esp, %ebp
 movl 12(%ebp), %eax
 addl 8(%ebp), %eax
 popl %ebp
 ret

80483b0: 55 89 e5 8b 45 0c 03 45 08 5d c3

C compiler (gcc)

Assembler (gas)

C program
(myprog.c)

Assembly program
(myprog.s)

Machine code
(myprog.o)

Stephen Chong, Harvard University

Skipping assembly language

•Most C compilers generate machine code (object files) directly.
•That is, without actually generating the human-readable assembly file.

•Assembly language is mostly useful to people, not machines.

•Can generate assembly from C using “gcc -S”
•And then compile to an object file by hand using “gas”

 5

myprog.c myprog.s myprog.ogcc -S gas

gcc -c

Stephen Chong, Harvard University

Object files and executables

•C source file (myprog.c) is compiled into an object file (myprog.o)
•Object file contains the machine code for that C file.

•It may contain references to external variables and routines

•E.g., if myprog.c calls printf(), then myprog.o will contain a reference to
printf()

•Multiple object files are linked to produce an executable file.
•Typically, standard libraries (e.g., “libc”) are included in the linking process.

•Libraries are just collections of pre-compiled object files, nothing more!

 6

myprog.c myprog.ogcc -c

somelib.c somelib.ogcc -c

myproglinker
(ld)

Stephen Chong, Harvard University

Characteristics of assembly language

•Assembly language is very, very simple.

•Simple, minimal data types
•Integer data of 1, 2, 4, or 8 bytes

•Floating point data of 4, 8, or 10 bytes

•No aggregate types such as arrays or structures!

•Primitive operations
•Perform arithmetic operation on registers or memory (add, subtract, etc.)

•Read data from memory into a register

•Store data from register into memory

•Transfer control of program (jump to new address)

•Test a control flag, conditional jump (e.g., jump only if zero flag set)

•More complex operations must be built up as (possibly long)
sequences of instructions.

 7

Stephen Chong, Harvard University

Assembly vs Machine Code

•We write assembly language instructions
•e.g., “addq %rbx, %rax”

•The machine interprets machine code bits
•e.g., “101011001100111…”

•The assembler takes care of compiling assembly
language to bits for us.
•It also provides a few conveniences

 8

Stephen Chong, Harvard University

Intel’s X86 Architecture

•1978: Intel introduces 8086
•1982: 80186, 80286
•1985: 80386
•1989: 80486 (100MHz, 1µm)
•1993: Pentium
•1995: Pentium Pro
•1997: Pentium II/III
•2000: Pentium 4
•2003: Pentium M, Intel Core
•2006: Intel Core 2
•2008: Intel Core i3/i5/i7
•2011: SandyBridge / IvyBridge
•2013: Haswell
•2014: Broadwell
•2015: Skylake (4.2GHz, 14nm)
•AMD has a parallel line of processors

 9

Stephen Chong, Harvard University

X86 vs. X86lite

•X86 assembly is very complicated:
•8-, 16-, 32-, 64-bit values + floating points, etc.
•Intel 64 and IA 32 architectures have a huge number of functions
•“CISC” complex instructions
•Machine code: instructions range in size from 1 byte to 17 bytes
•Lots of hold-over design decisions for backwards compatibility
•Hard to understand, there is a large book about optimizations at

just the instruction-selection level

•X86lite is a very simple subset of X86:
•Only 64 bit signed integers (no floating point, no 16bit, no …)
•Only about 20 instructions
•Sufficient as a target language for general-purpose computing

�10

Stephen Chong, Harvard University

X86 Schematic

�11

Code	&	
Data

Heap

Stack

La
rg
er
	A
dd

re
ss
es

0x00000000

0xffffffff

Memory

rax rbx rcx rdx

rsi rdi rbp rsp

r08 r09 r10 r11

r12 r13 r14 r15

Control
									ALU
OF

SF

ZF

Instruction  
Decoder

RIP

Registers

Flags

Processor

Stephen Chong, Harvard University

X86lite Machine State: Registers

•Register File: 16 64-bit registers
•rax general purpose accumulator

•rbx base register, pointer to data

•rcx counter register for strings & loops

•rdx data register for I/O

•rsi pointer register, string source register

•rdi pointer register, string destination register

•rbp base pointer, points to the stack frame

•rsp stack pointer, points to the top of the stack

•r08-r15 general purpose registers

•rip a “virtual” register, points to the current instruction
•rip is manipulated only indirectly via jumps and return.

�12

Stephen Chong, Harvard University

Simplest instruction: mov

•movq SRC, DEST copy SRC into DEST
•Here, DEST and SRC are operands
•DEST is treated as a location

•A location can be a register or a memory address

•SRC is treated as a value
•A value is the contents of a register or memory address
•A value can also be an immediate (constant) or a label

•movq $4, %rax // move the 64-bit immediate value 4 into rax
•movq %rbx, %rax // move the contents of rbx into rax

�13

Stephen Chong, Harvard University

A Note About Instruction Syntax

•X86 presented in two common syntax formats

•AT&T notation: source before destination
•Prevalent in the Unix/Mac ecosystems
•Immediate values prefixed with ‘$’
•Registers prefixed with ‘%’
•Mnemonic suffixes: movq vs. mov

• q = quadword (4 words)

• l = long (2 words)

• w = word

• b = byte

•Intel notation: destination before source
•Used in the Intel specification / manuals
•Prevalent in the Windows ecosystem
•Instruction variant determined by register name

•Note: X86Lite uses AT&T notation and the 64-bit only version of the instructions
and registers

�14

movq $5, %rax

movl $5, %eax

src dest

mov rax, 5

mov eax, 5

dest src

Stephen Chong, Harvard University

Detour: 2’s complement

•Representing non-negative integers in bits is
straightforward

•How do we represent negative integers in bits?
•Three common encodings:

•Sign and magnitude
•Ones’ complement
•Two’s complement

 15

Stephen Chong, Harvard University

Two’s complement

•If integer k is represented by bits b1...bn, then -k is
represented by 100...00 - b1...bn (where |100…00|=n+1)
•Equivalent to taking ones’ complement and adding 1
•E.g., using 4 bits:

• 6 = 0110

• -6 = 10000-0110 = 1010 = (1111-0110)+1
•Using n bits, can represent numbers 2n values

•E.g., using 4 bits, can represent integers 
 -8, -7, …, -1, 0, 1, …, 6, 7

•Like sign and magnitude and ones’ complement, first bit
indicates whether number is negative

 16

Stephen Chong, Harvard University

Properties of two’s complement

•Same implementation of arithmetic operations as for
unsigned
•E.g., addition, using 4 bits
• unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010

• two’s complement: 0001 + 1001 = 1 + -7 = -6 = 1010
•Only one representation of zero!

•Simpler to implement operations

•Not symmetric around zero
•Can represent more negative numbers than positive numbers

•Most common representation of negative integers

 17

Stephen Chong, Harvard University

Integer overflow

•Overflow can also occur with negative integers
•With 32 bits, maximum integer expressible in 2‘s

complement is 231-1 = 0x7fffffff

•0x7fffffff + 0x1 = 0x80000000 = -231

•Minimum integer expressible in 32-bit 2’s complement

•0x80000000 + 0x80000000 = 0x0

 18

Carnegie Mellon

52

?"$/);"D"*-&]*$"-*(+&F++"61*&

!  J.)5$&F.1/*+&
!  (U'*+.4'7.2'v'$0'

!  :*'2,7*',)/4'

>'

$0)

$0l!'

]F++gZ-&%&*[&

-"

*"

3./(&=/8&

C1+/;).&=/8&

DC4+�,V'

B<(.n1P&

Stephen Chong, Harvard University

Integer overflow

 19

Carnegie Mellon

56

?"$/);"D"*-&_`$&G185;(8(*#&F++"61*&

!  ?);/($&
!  `#NH*'*V,E7'/,23<'

!  ?@);4'U+,2'#c'*,'lS'

!  J.)5$&F.1/*+&
!  (U'7.2'''$0T!'

!  A4/,247')4;@0C4'

!  :*'2,7*',)/4'
!  (U'7.2'u'T$0T!'

!  A4/,247'3,7H0C4'

!  :*'2,7*',)/4'

3F++gZ-&%&*[&

-"

*"
E1$B<(.&

U(-B<(.&

Stephen Chong, Harvard University

Integer overflow

 20

Stephen Chong, Harvard University

X86lite Arithmetic instructions

•negq DEST two’s complement negation
•addq SRC, DEST DEST ← DEST + SRC
•subq SRC, DEST DEST ← DEST – SRC
•imulq SRC, Reg Reg ← Reg * SRC  

 (truncated 128-bit mult.)
•Examples:

•addq %rbx, %rax // rax ← rax + rbx
•subq $4, rsp // rsp ← rsp - 4

•Note: Reg (in imulq) must be a register, not a memory address

�21

Stephen Chong, Harvard University

X86lite Logic/Bit manipulation
Operations

•notq DEST logical negation

•andq SRC, DEST DEST ← DEST && SRC
•orq SRC, DEST DEST ← DEST || SRC
•xorq SRC, DEST DEST ← DEST xor SRC

•sarq Amt, DEST DEST ← DEST >> amt (arithmetic shift right)
•shlq Amt, DEST DEST ← DEST << amt (arithmetic shift left)
•shrq Amt, DEST DEST ← DEST >>> amt (bitwise shift right)

�22

Stephen Chong, Harvard University

X86 Operands

•Operands are the values operated on by the assembly instructions
•Imm 64-bit literal signed integer “immediate”
•Lbl a “label” representing a machine address  

 the assembler/linker/loader resolve labels
•Reg One of the 16 registers, the value of a register is  

 its contents
•Ind [base:Reg][index:Reg,scale:int32][disp]  

 machine address (see next slide)

�23

Stephen Chong, Harvard University

X86 Addressing

•In general, there are three components of an indirect address
•Base: a machine address stored in a register
•Index * scale: a variable offset from the base
•Disp: a constant offset (displacement) from the base

•addr(ind) = Base + [Index * scale] + Disp
•When used as a location, ind denotes the address addr(ind)
•When used as a value, ind denotes Mem[addr(ind)], the contents  

of the memory address

•Example: -4(%rsp) denotes address: rsp – 4
•Example: (%rax, %rcx, 4) denotes address: rax + 4*rcx
•Example: 12(%rax, %rcx, 4) denotes address: rax + 4*rcx +12

•Note: Index cannot be rsp

•Note: X86Lite does not needs this full generality. It does not use index * scale

�24

Stephen Chong, Harvard University

X86lite Memory Model

•The X86lite memory consists of 264 bytes numbered 0x00000000
through 0xffffffff.

•X86lite treats the memory as consisting of 64-bit (8-byte) quadwords.

•Therefore: legal X86lite memory addresses consist of 64-bit,  
quadword-aligned pointers.

•All memory addresses are evenly divisible by 8

•leaq Ind, DEST DEST ← addr(Ind) loads a pointer into DEST

•By convention, there is a stack that grows from high addresses to low
addresses

•The register rsp points to the top of the stack
•pushq SRC rsp ← rsp - 8; Mem[rsp] ← SRC

•popq DEST DEST ← Mem[rsp]; rsp ← rsp + 8
�25

Stephen Chong, Harvard University

X86lite State: Condition Flags &
Codes

•X86 instructions set flags as a side effect

•X86lite has only 3 flags:
•OF: “overflow” set when the result is too big/small to fit in 64-bit reg.
•SF: “sign” set to the sign or the result (0=positive, 1 = negative)

•ZF: “zero” set when the result is 0

•From these flags, we can define Condition Codes
•To compare SRC1 and SRC2, compute SRC1 – SRC2 to set the flags
•e equality holds when ZF is set
•ne inequality holds when (not ZF)

•g greater than holds when (not ZF) and (not SF)
•l less than holds when SF <> OF

• Equivalently: ((SF && not OF) || (not SF && OF))

•ge greater or equal holds when (not SF)

•le than or equal holds when SF <> OF or ZF
�26

Stephen Chong, Harvard University

Code Blocks & Labels

•X86 assembly code is organized into labeled blocks:

•Labels indicate code locations that can be jump targets (either through conditional branch
instructions or function calls).

•Labels are translated away by the linker and loader – instructions live in the heap in the
“code segment”

•An X86 program begins executing at a designated code label (usually “main”)

�27

label1:
<instruction>
<instruction>
…
<instruction>

label2:
<instruction>
<instruction>
…
<instruction>

Stephen Chong, Harvard University

Conditional Instructions

•cmpq SRC1, SRC2 Compute SRC2 – SRC1, set condition flags

•setbCC DEST DEST’s lower byte ← if CC then 1 else 0

•jCC SRC rip ← if CC then SRC else fallthrough

•Example: 
 cmpq %rcx, %rax // Compare rax to ecx  
 je __truelbl // If rax = rcx then jump to __truelbl  

�28

Stephen Chong, Harvard University

Jumps, Call and Return

•jmp SRC rip ← SRC Jump to location in SRC

•callq SRC Push rip; rip ← SRC
•Call a procedure: Push the program counter to the stack

(decrementing rsp) and then jump to the machine instruction at
the address given by SRC.

•retq Pop into rip
•Return from a procedure: Pop the current top of the stack into rip

(incrementing rsp).
•This instruction effectively jumps to the address at the top of the

stack
�29

Stephen Chong, Harvard University

Implementing X86Lite

•See file x86.ml

 30

Stephen Chong, Harvard University

Compiling, Linking, Running

•To use hand-coded X86:
•1.Compile main.ml (or something like it) to either native or

bytecode

•2.Run it, redirecting the output to some .s file, e.g.:
• ./main >> test.s

•3.Use gcc to compile & link with runtime.c:
• gcc -o test runtime.c test.s

•4.You should be able to run the resulting executable:
• ./test

•If you want to debug in gdb:
•Call gcc with the –g flag too

 31

