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Announcements

•Name tags 
•Device free seating  

•Right side of classroom (as facing front): no devices 
•Allow you to commit to being device-free/avoid devices 

•College students registering for course: all good? 
•Access to Gradescope: all students should have 

•Contact Prof Chong if you don’t 

•Homework 0 (Google form): please complete this week! 
•https://forms.gle/P65LytJYbKA5MzBj9  

•Homework 1 (HellOCaml) out 
•Due Tuesday Sept 10
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Today

•Turning C into machine code 
•Intel x86 
•x86lite
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Turning C into Machine Code
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int dosum(int i, int j) {
return i+j;

}

dosum:
        pushl   %ebp
        movl    %esp, %ebp
        movl    12(%ebp), %eax
        addl    8(%ebp), %eax
        popl    %ebp
        ret

80483b0: 55 89 e5 8b 45 0c 03 45 08 5d c3

C compiler (gcc)

Assembler (gas)

C program 
(myprog.c)

Assembly program 
(myprog.s)

Machine code 
(myprog.o)
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Skipping assembly language

•Most C compilers generate machine code (object files) directly. 
•That is, without actually generating the human-readable assembly file. 

•Assembly language is mostly useful to people, not machines. 

•Can generate assembly from C using “gcc -S” 
•And then compile to an object file by hand using “gas”
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myprog.c myprog.s myprog.ogcc -S gas

gcc -c
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Object files and executables

•C source file (myprog.c) is compiled into an object file (myprog.o) 
•Object file contains the machine code for that C file. 

•It may contain references to external variables and routines 

•E.g., if myprog.c calls printf(), then myprog.o will contain a reference to 
printf() 

•Multiple object files are linked to produce an executable file. 
•Typically, standard libraries (e.g., “libc”) are included in the linking process. 

•Libraries are just collections of pre-compiled object files, nothing more!
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myprog.c myprog.ogcc -c

somelib.c somelib.ogcc -c

myproglinker 
(ld)
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Characteristics of assembly language

•Assembly language is very, very simple. 

•Simple, minimal data types 
•Integer data of 1, 2, 4, or 8 bytes 

•Floating point data of 4, 8, or 10 bytes 

•No aggregate types such as arrays or structures! 

•Primitive operations 
•Perform arithmetic operation on registers or memory (add, subtract, etc.) 

•Read data from memory into a register 

•Store data from register into memory 

•Transfer control of program (jump to new address) 

•Test a control flag, conditional jump (e.g., jump only if zero flag set) 

•More complex operations must be built up as (possibly long)  
sequences of instructions.
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Assembly vs Machine Code 

•We write assembly language instructions 
•e.g., “addq %rbx, %rax” 

•The machine interprets machine code bits 
•e.g., “101011001100111…” 

•The assembler takes care of compiling assembly 
language to bits for us. 
•It also provides a few conveniences
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Intel’s X86 Architecture

•1978: Intel introduces 8086 
•1982: 80186, 80286 
•1985: 80386 
•1989: 80486   (100MHz, 1µm) 
•1993: Pentium 
•1995: Pentium Pro 
•1997: Pentium II/III 
•2000: Pentium 4 
•2003: Pentium M, Intel Core 
•2006: Intel Core 2 
•2008: Intel Core i3/i5/i7 
•2011: SandyBridge / IvyBridge 
•2013: Haswell 
•2014: Broadwell 
•2015: Skylake (4.2GHz, 14nm)   
•AMD has a parallel line of processors
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X86 vs. X86lite

•X86 assembly is very complicated: 
•8-, 16-, 32-, 64-bit values + floating points, etc. 
•Intel 64 and IA 32 architectures have a huge number of functions 
•“CISC” complex instructions 
•Machine code: instructions range in size from 1 byte to 17 bytes 
•Lots of hold-over design decisions for backwards compatibility  
•Hard to understand, there is a large book about optimizations at 

just the instruction-selection level 

•X86lite is a very simple subset of X86: 
•Only 64 bit signed integers (no floating point, no 16bit, no …) 
•Only about 20 instructions 
•Sufficient as a target language for general-purpose computing
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X86 Schematic
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X86lite Machine State: Registers

•Register File:  16 64-bit registers 
•rax  general purpose accumulator 

•rbx  base register, pointer to data 

•rcx  counter register for strings & loops 

•rdx  data register for I/O 

•rsi  pointer register, string source register 

•rdi  pointer register, string destination register 

•rbp  base pointer, points to the stack frame 

•rsp  stack pointer, points to the top of the stack 

•r08-r15 general purpose registers 

•rip   a “virtual” register, points to the current instruction 
•rip is manipulated only indirectly via jumps and return. 
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Simplest instruction: mov

•movq SRC, DEST    copy SRC into DEST  
•Here, DEST and SRC are operands 
•DEST is treated as a location 

•A location can be a register or a memory address 

•SRC is treated as a value 
•A value is the contents of a register or memory address 
•A value can also be an immediate (constant) or a label 

•movq $4, %rax  // move the 64-bit immediate value 4 into rax 
•movq %rbx, %rax   // move the contents of rbx into rax
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A Note About Instruction Syntax

•X86 presented in two common syntax formats 

•AT&T notation:  source before destination 
•Prevalent in the Unix/Mac ecosystems 
•Immediate values prefixed with ‘$’ 
•Registers prefixed with ‘%’ 
•Mnemonic suffixes: movq vs. mov 

• q = quadword (4 words) 

• l = long (2 words) 

• w = word 

• b = byte 

•Intel notation: destination before source 
•Used in the Intel specification / manuals 
•Prevalent in the Windows ecosystem 
•Instruction variant determined by register name 

•Note: X86Lite uses AT&T notation and the 64-bit only version of the instructions 
and registers 
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movq $5, %rax

movl $5, %eax

src dest

mov rax, 5

mov eax, 5

dest src
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Detour: 2’s complement

•Representing non-negative integers in bits is 
straightforward 

•How do we represent negative integers in bits? 
•Three common encodings: 

•Sign and magnitude 
•Ones’ complement 
•Two’s complement
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Two’s complement

•If integer k is represented by bits b1...bn, then -k is 
represented by 100...00 - b1...bn (where |100…00|=n+1) 
•Equivalent to taking ones’ complement and adding 1 
•E.g., using 4 bits: 

• 6 = 0110 

• -6 = 10000-0110 = 1010 = (1111-0110)+1
•Using n bits, can represent numbers 2n values 

•E.g., using 4 bits, can represent integers 
              -8, -7, …, -1, 0, 1, …, 6, 7 

•Like sign and magnitude and ones’ complement, first bit 
indicates whether number is negative
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Properties of two’s complement

•Same implementation of arithmetic operations as for 
unsigned 
•E.g., addition, using 4 bits 
• unsigned: 0001 + 1001 = 1 + 9 = 10 = 1010 

• two’s complement: 0001 + 1001 = 1 + -7 = -6 = 1010 
•Only one representation of zero! 

•Simpler to implement operations  

•Not symmetric around zero 
•Can represent more negative numbers than positive numbers 

•Most common representation of negative integers
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Integer overflow

•Overflow can also occur with negative integers 
•With 32 bits, maximum integer expressible in 2‘s 

complement is 231-1 = 0x7fffffff 

•0x7fffffff + 0x1 = 0x80000000 = -231 

•Minimum integer expressible in 32-bit 2’s complement 

•0x80000000 + 0x80000000 = 0x0
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Integer overflow
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Integer overflow
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X86lite Arithmetic instructions

•negq DEST    two’s complement negation 
•addq SRC, DEST   DEST ← DEST + SRC 
•subq SRC, DEST    DEST ← DEST – SRC 
•imulq SRC, Reg   Reg ← Reg * SRC  

         (truncated 128-bit mult.) 
•Examples: 

•addq %rbx, %rax // rax ← rax + rbx 
•subq $4, rsp  // rsp  ← rsp - 4 

•Note: Reg (in imulq) must be a register, not a memory address

�21



Stephen Chong, Harvard University

X86lite Logic/Bit manipulation 
Operations

•notq DEST   logical negation 

•andq SRC, DEST   DEST ← DEST && SRC 
•orq SRC, DEST  DEST ← DEST || SRC 
•xorq SRC, DEST  DEST ← DEST xor SRC 

•sarq Amt, DEST   DEST ← DEST >> amt   (arithmetic shift right) 
•shlq Amt, DEST   DEST ← DEST << amt   (arithmetic shift left) 
•shrq Amt, DEST  DEST ← DEST >>> amt   (bitwise shift right)
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X86 Operands

•Operands are the values operated on by the assembly instructions 
•Imm    64-bit literal signed integer   “immediate”  
•Lbl   a “label” representing a machine address  

    the assembler/linker/loader resolve labels  
•Reg   One of the 16 registers, the value of a register is  

    its contents 
•Ind   [base:Reg][index:Reg,scale:int32][disp]  

    machine address (see next slide)
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X86 Addressing

•In general, there are three components of an indirect address  
•Base:     a machine address stored in a register 
•Index * scale: a variable offset from the base 
•Disp:    a constant offset (displacement) from the base 

•addr(ind)  =  Base + [Index * scale] + Disp 
•When used as a location, ind denotes the address addr(ind) 
•When used as a value, ind denotes Mem[addr(ind)], the contents  

of the memory address 

•Example:  -4(%rsp)    denotes address:   rsp – 4 
•Example:  (%rax, %rcx, 4)   denotes address:   rax + 4*rcx 
•Example:  12(%rax, %rcx, 4) denotes address:   rax + 4*rcx +12 

•Note: Index cannot be rsp 

•Note: X86Lite does not needs this full generality. It does not use index * scale
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X86lite Memory Model

•The X86lite memory consists of 264 bytes numbered 0x00000000 
through 0xffffffff. 

•X86lite treats the memory as consisting of 64-bit (8-byte) quadwords. 

•Therefore: legal X86lite memory addresses consist of 64-bit,  
quadword-aligned pointers. 

•All memory addresses are evenly divisible by 8 

•leaq Ind, DEST   DEST ← addr(Ind)    loads a pointer into DEST 

•By convention, there is a stack that grows from high addresses to low 
addresses 

•The register rsp points to the top of the stack 
•pushq SRC  rsp ← rsp - 8; Mem[rsp] ← SRC 

•popq DEST  DEST ← Mem[rsp]; rsp ← rsp + 8
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X86lite State: Condition Flags & 
Codes

•X86 instructions set flags as a side effect 

•X86lite has only 3 flags: 
•OF: “overflow”  set when the result is too big/small to fit in 64-bit reg. 
•SF: “sign” set to the sign or the result (0=positive, 1 = negative) 

•ZF: “zero” set when the result is 0 

•From these flags, we can define Condition Codes 
•To compare SRC1 and SRC2, compute SRC1 – SRC2 to set the flags 
•e  equality  holds when ZF is set 
•ne   inequality holds when (not ZF) 

•g  greater than holds when (not ZF) and (not SF) 
•l less than  holds when SF <> OF 

• Equivalently: ((SF && not OF) || (not SF && OF))  

•ge  greater or equal  holds when (not SF) 

•le  than or equal   holds when SF <> OF or ZF
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Code Blocks & Labels

•X86 assembly code is organized into labeled blocks: 

•Labels indicate code locations that can be jump targets (either through conditional branch 
instructions or function calls). 

•Labels are translated away by the linker and loader – instructions live in the heap in the 
“code segment” 

•An X86 program begins executing at a designated code label (usually “main”)

�27

label1:
<instruction>
<instruction>
…
<instruction>

label2:
<instruction>
<instruction>
…
<instruction>
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Conditional Instructions

•cmpq SRC1, SRC2  Compute SRC2 – SRC1, set condition flags 

•setbCC DEST    DEST’s lower byte ← if CC then 1 else 0 

•jCC SRC     rip ← if CC then SRC else fallthrough 

•Example: 
  cmpq %rcx, %rax  // Compare rax to ecx  
  je __truelbl     // If rax = rcx then jump to __truelbl  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Jumps, Call and Return

•jmp SRC   rip ← SRC  Jump to location in SRC 

•callq SRC  Push rip;  rip ← SRC 
•Call a procedure: Push the program counter to the stack 

(decrementing rsp) and then jump to the machine instruction at 
the address given by SRC. 

•retq    Pop into rip 
•Return from a procedure: Pop the current top of the stack into rip 

(incrementing rsp).   
•This instruction effectively jumps to the address at the top of the 

stack
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Implementing X86Lite

•See file x86.ml
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Compiling, Linking, Running

•To use hand-coded X86: 
•1.Compile main.ml (or something like it) to either native or 

bytecode 

•2.Run it, redirecting the output to some .s file, e.g.: 
• ./main >> test.s

•3.Use gcc to compile & link with runtime.c: 
• gcc -o test runtime.c test.s

•4.You should be able to run the resulting executable: 
• ./test

•If you want to debug in gdb: 
•Call gcc with the –g flag too
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